Determination of Hg in Biological Samples and Ethanol Fuel by Photochemical Vapor Generation after Pre-Concentration in a Gold Trap

In this work, the photochemical vapor generation (PVG) coupled with atomic absorption spectrometry and a pre-concentration step with an Au column was used for the determination of Hg in biological samples and ethanol fuel. PVG with pre-concentration showed an up to 250-fold higher sensitivity compared to the approach without pre-concentration. The accuracy of analysis of biological samples was evaluated using certified reference materials (fish tissues), while for ethanol fuel samples, recovery tests were employed (91%). Analytical curves were linear (R > 0.99) in the studied range of 2.5 to 10 µg L-1 for conventional PVG and 0.2 to 0.5 µg L-1 for PVG with the pre-concentration step. For the last, the limits of detection reached for biological samples and ethanol fuel were 0.02 and 0.01 µg L-1, respectively. The systems presented are simple, sensitive and safe for the control of low Hg concentrations in different samples. However, only the system using pre-concentration with an Au column was capable of obtaining the reproduced signals of Hg in low concentrations of the order of 0.2 µg L-1.

Saved in:
Bibliographic Details
Main Authors: Oreste,Eliezer Q., Oliveira,Richard M. de, Ribeiro,Anderson S., Mahmoud,Talal S., Vieira,Mariana A.
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Química 2017
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532017000901779
Tags: Add Tag
No Tags, Be the first to tag this record!