Análise dos métodos de diferenças finitas e expansão rápida na migração reversa no tempo
Neste trabalho mostramos através da solução analítica da equação da onda no tempo e do método de expansão rápida (REM) que é possível obter a solução da equação da onda que utiliza esquemas de diferenças-finitas de qualquer ordem no tempo. Além disso, demonstramos que a grande vantagem do REM é que o método permite usar qualquer intervalo de amostragem temporal para realizar a extrapolação do campo de ondas, enquanto que o método de diferenças finitas impõe limites ao intervalo usado, devido à condição de estabilidade e à dispersão numérica. Fizemos também uma análise das aproximações em séries de Taylor e em polinômios de Chebyshev para a função cosseno que aparece na solução analítica da equação da onda no tempo. E finalizamos este trabalho mostrando o desempenho dos métodos numéricos na migração reversa no tempo pós e pré-empilhamento e demonstramos que o REM, combinado com o método espectral para calcular as derivadas espaciais, pode ser usado para obter resultados numericamente estáveis e com menor custo computacional do que um método de extrapolação do campo de ondas no tempo com um esquema de diferenças-finitas, dentro do mesmo nível de precisão.
Main Authors: | , |
---|---|
Format: | Digital revista |
Language: | Portuguese |
Published: |
Sociedade Brasileira de Geofísica
2010
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-261X2010000400014 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|