Employing artificial neural networks and fluorescence spectrum for food vegetable oils identification

Abstract Vegetable oils (VOs) come in a wide range of flavors and trademarks. VOs are very similar in appearance, flavor, and taste, and it's frequently difficult to tell them from just by looking at them. Approaches for classifying these oils are sometimes expensive and time-intensive, and they frequently include analytical chemical techniques as well as mathematical algorithms like as Artificial Neural Networks (ANNs), Properties of Partial Least Squares (PLS), Principal Components Regression (PCR), and Principal Component Analysis (PCA) to enhance their effectiveness. Because of the large range of goods available, more productive techniques for qualifying, characterizing, and classifying these substances are required, as the ultimate cost should indicate the quality of the commodity that reaches the user. This study provides a technique for classifying VOs such as different manufacturers' soybean, corn, sunflower, and canola. This method utilized a Charge-Coupled Device (CCD) array sensor, a light emission diode, and a straightforward mathematical approach to capture the generated fluorescence spectrum (FS) in diluted oil. The spectrum classifications are performed using an ANN with three layers, each having four neurons. The approach can categorize VO and enables rapid network training with a 72% success rate utilizing only a few mathematical changes in the spectra data.

Saved in:
Bibliographic Details
Main Authors: PRANOTO,Wawan Joko, AL-SHAWI,Sarmad Ghazi, CHETTHAMRONGCHAI,Paitoon, CHEN,Tzu-Chia, PETUKHOVA,Ekaterina, NIKOLAEVA,Natalia, ABDELBASSET,Walid Kamal, YUSHCHENKО,Natalya Anatolyevna, ARAVINDHAN,Surendar
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Ciência e Tecnologia de Alimentos 2022
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612022000100836
Tags: Add Tag
No Tags, Be the first to tag this record!