FUZZY MODELING OF THE EFFECTS OF DIFFERENT IRRIGATION DEPTH IN RADISH CROP. PART II: BIOMETRIC VARIABLES ANALYSIS

ABSTRACT In order to estimate the response of biometric variables in different irrigation depths in radish crop, as well as their relations in the development of the crop, a fuzzy mathematical analysis was carried out from irrigation with depths of different percentages of the crop evapotranspiration (ETc), using Gaussian pertinence functions for the input variable and triangular for the biometric output variables. Validations were performed using neural network models, smoothing splines and polynomial regression. The relation among the biometric variables was measured applying the Pearson correlation coefficient. The results showed that the fuzzy modeling presented superiority in the crop development estimate over the quadratic polynomial regression model, neural network and smoothing splines, because it achieved an average reduction of errors among the biometric variables, of 7.8% 94.6% and 9.2% for the RMSE in the respective models, as well as a better adjustment of the data with average R2 of the variables. The modeling with neural network showed inadequate agronomic behavior in data representation. Regarding biometric variables, the length and diameter of the tuberous root are inversely correlated, and the fresh phytomass of the tuberous root is correlated only with the fresh phytomass of the root.

Saved in:
Bibliographic Details
Main Authors: Boso,Ana C. M. R., Cremasco,Camila P., Putti,Fernando F., Gabriel Filho,Luís R. A.
Format: Digital revista
Language:English
Published: Associação Brasileira de Engenharia Agrícola 2021
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162021000300319
Tags: Add Tag
No Tags, Be the first to tag this record!