A comprehensive analysis of 19F + 9Be, 12C, 16O, 19F, 27Al, 28,30Si, 40Ca, 54,56Fe, 208Pb, 232Th fusion reactions

Abstract We theoretically analyze many fusion experimental data by using ten different density distributions of the 19F nucleus. The real potentials are obtained by means of the double folding model while the imaginary potentials are established as the Woods-Saxon potential. The theoretical results are compared with the results calculated over one-dimensional Wong formula as well as the experimental data. Thus, alternative density distributions are proposed for the analysis of the experimental data of the 19F fusion reactions. Additionally, the barrier positions and heights of all the analyzed fusion reactions are calculated for all the density distributions and new analytical expressions for these results are derived. Finally, new pocket formulas giving the imaginary potential depths for fusion cross-section calculations with 19F are obtained for the first time.

Saved in:
Bibliographic Details
Main Authors: Aygun,M., Cin,H.
Format: Digital revista
Language:English
Published: Sociedad Mexicana de Física 2022
Online Access:http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0035-001X2022000300013
Tags: Add Tag
No Tags, Be the first to tag this record!