Capillary Forces Lead to Pendant Crystals at the Liquid-Air Interface of Evaporating Salt Solutions

We investigated the nucleation and growth processes of individual NaCl crystals from an evaporating salt solution that is supersaturated. We find that crystals nucleate at the liquid/vapor interface, resulting in distinct “pendant” crystals, which reach millimeter dimensions. The substantial size of the crystals induces deformation of the interface. This process and the evaporation rate, in turn, determine the final crystal shape, which features a deep central cavity. Our findings reveal that a delicate balance exists between gravity, buoyancy, and the surface tension of the liquid/vapor interface that allows the crystal to remain pendant. When the contact angle of the crystal with the meniscus reaches 90°, the crystal disconnects from the interface and falls into the solution. We quantitatively predict the critical mass at which this occurs.

Saved in:
Bibliographic Details
Main Authors: Lepinay, Simon E.G., Deblais, Antoine, Habibi, Mehdi, Bonn, Daniel, Shahidzadeh, Noushine
Format: Article/Letter to editor biblioteca
Language:English
Subjects:Life Science,
Online Access:https://research.wur.nl/en/publications/capillary-forces-lead-to-pendant-crystals-at-the-liquid-air-inter
Tags: Add Tag
No Tags, Be the first to tag this record!