Understanding the Role of Sea Surface Temperature and Urbanization on Severe Thunderstorms Dynamics : A Case Study in Surabaya, Indonesia
Within the period 2014–2017, five hail events were reported in the city of Surabaya in Indonesia. Although deep convection commonly develops over the Maritime Continent, severe thunderstorms triggering hail events develop less frequently as specific atmospheric conditions are required. The rapid urbanization in Surabaya might have led to increased heat release to the atmosphere and to the deepening of convection, which raises the question of whether urbanization is the culprit of the recent hail events in Surabaya. Hence, for a selected hail event, we used the high-resolution Weather Research and Forecasting model to understand the storm dynamics and to explore the role of urbanization, sea surface temperature, and aerosol concentration on the storm dynamics with a total of 11 scenarios. The control simulation reveals that low-level convergence induced by a sea breeze creates instability. At the same time, the urban heat release enhances the energy supply to induce hail formation and retain the storm's lifetime over the city. A factor separation method revealed that the urbanization (added anthropogenic heat flux, urban aerosol, and the rise in building height) and the sea surface temperature increase contribute to the storm enhancement over Surabaya, producing two times higher updraft velocity, doubling the maximum graupel mass mixing ratio and finally resulting in 15%–30% higher accumulated precipitation over Surabaya, compared to the control simulation.
Main Authors: | , , , |
---|---|
Format: | Article/Letter to editor biblioteca |
Language: | English |
Subjects: | Surabaya, WRF, modeling, precipitation, sea breeze, |
Online Access: | https://research.wur.nl/en/publications/understanding-the-role-of-sea-surface-temperature-and-urbanizatio |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|