Characterization of triterpenoids as possible bitter-tasting compounds in teas infected with bird's eye spot disease
Tea infected with bird's eye spot disease generally imparts a long-lasting bitter taste, which is unacceptable to most consumers. This study has comprehensively evaluated the taste profiles of infected and healthy teas and investigated their known bitter compounds previously reported in tea. Quantification analyses and calculation of dose-over-threshold (DoT) factors revealed that no obvious difference was visualized in catechins, caffeine, bitter amino acids, and flavonols and their glycosides between infected and healthy tea samples, which was also verified by principal component analysis (PCA) and hierarchical cluster analysis (HCA). Therefore, these known bitter compounds have been ruled out as critical contributors to the long-lasting bitterness of infected teas. Furthermore, Gel permeation chromatography, sensory analysis, and UPLC-Q-TOF-MS were employed and identified 13 substances from the target bitter fractions, including caffeine, ten triterpenoids, and two oxylipins. The higher triterpenoid levels were supposed to be the reason causing the long-lasting bitterness. This study has provided a research direction for the molecular basis of the long-lasting bitterness of infected tea leaves with bird's eye spot disease.
Main Authors: | , , , , , , , , |
---|---|
Format: | Article/Letter to editor biblioteca |
Language: | English |
Subjects: | Bird's eye spot disease, Bitter compounds, Tea, Triterpenoids, |
Online Access: | https://research.wur.nl/en/publications/characterization-of-triterpenoids-as-possible-bitter-tasting-comp |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tea infected with bird's eye spot disease generally imparts a long-lasting bitter taste, which is unacceptable to most consumers. This study has comprehensively evaluated the taste profiles of infected and healthy teas and investigated their known bitter compounds previously reported in tea. Quantification analyses and calculation of dose-over-threshold (DoT) factors revealed that no obvious difference was visualized in catechins, caffeine, bitter amino acids, and flavonols and their glycosides between infected and healthy tea samples, which was also verified by principal component analysis (PCA) and hierarchical cluster analysis (HCA). Therefore, these known bitter compounds have been ruled out as critical contributors to the long-lasting bitterness of infected teas. Furthermore, Gel permeation chromatography, sensory analysis, and UPLC-Q-TOF-MS were employed and identified 13 substances from the target bitter fractions, including caffeine, ten triterpenoids, and two oxylipins. The higher triterpenoid levels were supposed to be the reason causing the long-lasting bitterness. This study has provided a research direction for the molecular basis of the long-lasting bitterness of infected tea leaves with bird's eye spot disease. |
---|