Towards a New Generation of Trait-Flexible Vegetation Models

Plant trait variability, emerging from eco-evolutionary dynamics that range from alleles to macroecological scales, is one of the most elusive, but possibly most consequential, aspects of biodiversity. Plasticity, epigenetics, and genetic diversity are major determinants of how plants will respond to climate change, yet these processes are rarely represented in current vegetation models. Here, we provide an overview of the challenges associated with understanding the causes and consequences of plant trait variability, and review current developments to include plasticity and evolutionary mechanisms in vegetation models. We also present a roadmap of research priorities to develop a next generation of vegetation models with flexible traits. Including trait variability in vegetation models is necessary to better represent biosphere responses to global change.

Saved in:
Bibliographic Details
Main Authors: Berzaghi, Fabio, Wright, Ian J., Kramer, Koen, Oddou-Muratorio, Sylvie, Bohn, Friedrich J., Reyer, Christopher P.O., Sabaté, Santiago, Sanders, Tanja G.M., Hartig, Florian
Format: Article/Letter to editor biblioteca
Language:English
Subjects:eco-evolution, intraspecific variation, plant genetics, plant traits, vegetation modeling,
Online Access:https://research.wur.nl/en/publications/towards-a-new-generation-of-trait-flexible-vegetation-models
Tags: Add Tag
No Tags, Be the first to tag this record!