SAPP: functional genome annotation and analysis through a semantic framework using FAIR principles
To unlock the full potential of genome data and to enhance data interoperability and reusability of genome annotations we have developed SAPP, a Semantic Annotation Platform with Provenance. SAPP is designed as an infrastructure supporting FAIR de novo computational genomics but can also be used to process and analyze existing genome annotations. SAPP automatically predicts, tracks and stores structural and functional annotations and associated dataset- and element-wise provenance in a Linked Data format, thereby enabling information mining and retrieval with Semantic Web technologies. This greatly reduces the administrative burden of handling multiple analysis tools and versions thereof and facilitates multi-level large scale comparative analysis.
Main Authors: | , , , , , |
---|---|
Format: | Article/Letter to editor biblioteca |
Language: | English |
Subjects: | Life Science, |
Online Access: | https://research.wur.nl/en/publications/sapp-functional-genome-annotation-and-analysis-through-a-semantic |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To unlock the full potential of genome data and to enhance data interoperability and reusability of genome annotations we have developed SAPP, a Semantic Annotation Platform with Provenance. SAPP is designed as an infrastructure supporting FAIR de novo computational genomics but can also be used to process and analyze existing genome annotations. SAPP automatically predicts, tracks and stores structural and functional annotations and associated dataset- and element-wise provenance in a Linked Data format, thereby enabling information mining and retrieval with Semantic Web technologies. This greatly reduces the administrative burden of handling multiple analysis tools and versions thereof and facilitates multi-level large scale comparative analysis. |
---|