Core-shell particles at fluid interfaces : performance as interfacial stabilizers

There is a growing interest in the use of particles as stabilizers for foams and emulsions. Applying hard particles for stabilization of fluid interface is referred to as Pickering stabilization. By using hard particles instead of surfactants and polymers, fluid interfaces can be effectively stabilized against Ostwald ripening and coalescence. A drawback of the use of hard particles as interfacial stabilizers is that they often experience a pronounced energy barrier for interfacial adsorption and that hard particles are very specific with regard to the type of fluid interface they can adsorb to. Soft particles, on the other hand, are known as good stabilizers against coalescence and they spontaneously adsorb to a variety of different fluid interfaces. The aim of this thesis was to investigate core-shell particles comprising a hard core and soft shell with regard to their interfacial behaviour and their ability to act as sole stabilizers for foams and emulsions. We hypothesised that the presence of the soft shell allows for easier interfacial adsorption of core-shell particles compared to the hard core particles only. To test this hypothesis, we prepared core-shell particles comprising a solid polystyrene (PS) core and a soft poly-N-isopropylacrylamide (PNIPAM) shell. To ascertain the effect of shell thickness, we prepared a range of core-shell particles with different shell thicknesses, containing identical core particles. We found that core-shell particles are intrinsically surface active and can generate high surface pressures at the air-water interface and oil-water interfaces, whereas core particles seemed to experience a large energy barrier for interfacial adsorption and did not lower the surface tension. We also confirmed by microscopy that core-shell particles are actually adsorbing to the fluid interface and form densely packed interfacial layers. Further, we found that a certain critical thickness of the soft shell is necessary in order to ensure facile interfacial adsorption. If the PNIPAM shell on top of the core particles is well above 100nm thick, particle adsorption at the air-water interface was found to be diffusion limited. By gentle hand-shaking we were able to produce dispersion of air bubbles and emulsion droplets solely stabilized by core-shell particles. The resulting bubbles still underwent Ostwald ripening, albeit slowly. For oil-in-water emulsions of hexane and toluene, both of which have a relatively high solubility in the continuous phase, we found that core-shell particles can stop Ostwald ripening. The resulting emulsion droplets adopted pronounced non-spherical shapes, indicating a high elasticity of the interface. The high stability and the remarkable non-spherical shape of the emulsion droplets stabilized by core-shell particles were features we also observed for fluid dispersion stabilized by hard particles. This shows that in terms of emulsion stability core-shell particles behave similar to hard particles as interfacial stabilizer. As to why the differences between the stability of bubble and oil dispersions arise could not be finally answered. Yet, microscopic analysis of the interfacial configuration of core-shell particles at the air-water interface reveals some peculiar insights which may suggest that core-shell particles adsorb in a polymer-like fashion with the soft PNIPAM shells adsorbing to the air-water interface only, while the hard PS cores reside in the continuous phase. In summary, we showed that core-shell particles with a hard core and a soft shell can indeed combine the advantageous properties of hard and soft particles. The soft shell enables spontaneous adsorption to a variety of fluid interfaces. Despite their spontaneous adsorption, core-shell particles strongly anchor and do not spontaneously desorb from the fluid interface again. Further, the hard core provides enough rigidity to the core-shell particles to allow the establishment of a stress bearing interfacial particle network. This network eventually stops Ostwald ripening in oil-in-water emulsions. Our results therefore show that in the case of oil-water interfaces, core-shell particles can perform better than solely hard particles as interfacial stabilizers.

Saved in:
Bibliographic Details
Main Author: Buchcic, C.
Other Authors: Cohen Stuart, Martien
Format: Doctoral thesis biblioteca
Language:English
Published: Wageningen University
Subjects:adsorption, colloidal properties, fluids, interface, particles, stabilization, stabilizers, adsorptie, colloïdale eigenschappen, deeltjes, grensvlak, stabilisatie, stabiliseermiddelen, vloeistoffen (fluids),
Online Access:https://research.wur.nl/en/publications/core-shell-particles-at-fluid-interfaces-performance-as-interfaci
Tags: Add Tag
No Tags, Be the first to tag this record!