The concentration gradient flow battery as electricity storage system : Technology potential and energy dissipation

Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable energy storage system which operates by performing cycles during which energy generated from renewable resource is first used to produce highly concentrated brine and diluate, followed up mixing these two solutions in order to generate power. In this work, we present theoretical results of the attainable energy density as function of salt type and concentration. A linearized Nernst-Planck model is used to describe water, salt and charge transport. We validate our model with experiments over wide range of sodium chloride concentrations (0.025-3 m) and current densities (-49 to +33 A m-2). We find that depending on current density, charge and discharge steps have significantly different thermodynamic efficiency. In addition, we show that at optimal current densities, mechanisms of energy dissipation change with salt concentration. We find the highest thermodynamic efficiency at low concentrate concentrations. When using salt concentrations above 1 m, water and co-ion transport contribute to high energy dissipation due to irreversible mixing.

Saved in:
Bibliographic Details
Main Authors: Van Egmond, W.J., Saakes, M., Porada, S., Meuwissen, T., Buisman, C.J.N., Hamelers, H.V.M.
Format: Article/Letter to editor biblioteca
Language:English
Subjects:Aqueous based battery, Flow batteries, Ion-exchange membranes, Large scale electricity energy storage, Reverse electrodialysis, Salinity gradient energy,
Online Access:https://research.wur.nl/en/publications/the-concentration-gradient-flow-battery-as-electricity-storage-sy
Tags: Add Tag
No Tags, Be the first to tag this record!