Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax

In a Plant Microbial Fuel Cell (P-MFC) three plants were tested for concurrent biomass and bio-electricity production and maximization of power output. Spartina anglica and Arundinella anomala concurrently produced biomass and bio-electricity for six months consecutively. Average power production of the P-MFC with S. anglica during 13 weeks was 16% of the theoretical maximum power and 8% during 7 weeks for A. anomala. The P-MFC with Arundo donax, did not produce electricity with a stable output, due to break down of the system. The highest obtained power density in a P-MFC was 222 mW/m2 membrane surface area with S. anglica, over twice as high as the highest reported power density in a P-MFC. High biomass yields were obtained in all P-MFC’s, with a high root:shoot ratio, probably caused nutrient availability and anaerobia in the soil. Power output maximization via adjusting load on the system lead to unstable performance of the P-MFC

Saved in:
Bibliographic Details
Main Authors: Helder, M., Strik, D.P.B.T.B., Hamelers, H.V.M., Kuhn, A.J., Blok, C., Buisman, C.J.N.
Format: Article/Letter to editor biblioteca
Language:English
Subjects:dynamics, giant reed, growth, stress,
Online Access:https://research.wur.nl/en/publications/concurrent-bio-electricity-and-biomass-production-in-three-plant-
Tags: Add Tag
No Tags, Be the first to tag this record!