Multidimensional Scaling with Regional Restrictions for Facet Theory: an Application to Levi's Political Protest Data

Multidimensional scaling (MDS) is often used for the analysis of correlation matrices of items generated by a facet theory design. The emphasis of the analysis is on regional hypotheses on the location of the items in the MDS solution. An important regional hypothesis is the axial constraint where the items from different levels of a facet are assumed to be located in different parallel slices. The simplest approach is to do an MDS and draw the parallel lines separating the slices as good as possible by hand. Alternatively, Borg and Shye (1995) propose to automate the second step. Borg and Groenen (1997, 2005) proposed a simultaneous approach for ordered facets when the number of MDS dimensions equals the number of facets. In this paper, we propose a new algorithm that estimates an MDS solution subject to axial constraints without the restriction that the number of facets equals the number of dimensions. The algorithm is based on constrained iterative majorization of De Leeuw and Heise...

Saved in:
Bibliographic Details
Main Authors: Groenen, P.J.F., van der Lans, I.A.
Format: External research report biblioteca
Language:English
Published: RSM Erasmus Univ., Erasmus Research Inst. Management (ERIM)
Subjects:algorithms, classification, correlation analysis, dimensional analysis, equations, mathematical models, scaling, algoritmen, classificatie, correlatieanalyse, dimensie-analyse, schaalverandering, vergelijkingen (wiskundig), wiskundige modellen,
Online Access:https://research.wur.nl/en/publications/multidimensional-scaling-with-regional-restrictions-for-facet-the
Tags: Add Tag
No Tags, Be the first to tag this record!