Molecular characterization of Ulex europaeus biochar obtained from laboratory heat treatment experiments - A pyrolysis-GC/MS study
Gorse species (Ulex sp.) are ubiquitous in the shrublands of NW Spain and have the potential to become key players in an integral biofuel/biochar program in NW Spain. Here we present molecular characterization (using pyrolysis-GC/MS) of a biochar "thermosequence" obtained by laboratory heating of Ulex europaeus wood in a muffle furnace between 200 and 600°C (T CHAR). Low temperature chars (T CHAR ≤ 350°C) produced significant amounts of pyrolysis products of which the precursor biopolymer could be recognized, while high-temperature chars (T CHAR ≥ 400°C) produced mainly phenols and monocyclic and polycyclic aromatic hydrocarbons, which are not specific for any biopolymer. Carbohydrate could hardly be recognized at T CHAR ≥ 350°C. The thermal rearrangement of polyphenols, mainly lignin, was reflected in more detail (1) C 3-side chain shortening and probably depolymerization (T CHAR 200-350°C), (2) demethoxylation of syringyl and probably also some guaiacyl lignin (T CHAR 300-400°C), (3) elimination of virtually all remaining methoxyl groups (T CHAR 350-400°C), through dehydroxylation and demethoxylation, (4) almost complete dehydroxylation of lignin and other biopolymers (T CHAR 400-500°C), (5) progressive condensation into polyaromatic structures (T CHAR 300-500°C) and (6) partial elimination of alkyl bridges between (poly)aromatic moieties (T CHAR 450-500°C). These results were supported by Fourier transform infrared spectroscopy (FTIR) of the same samples. We conclude that pyrolysis-GC/MS can be used as a rapid molecular screening method of gorse-derived biochar. Molecular properties elucidation is an essential part of predicting the stability and agronomical behavior of gorse-derived biochar after future implementation in soils. © 2012 Elsevier B.V. All rights reserved.
Main Authors: | , , , |
---|---|
Format: | artículo biblioteca |
Language: | English |
Published: |
Elsevier
2012
|
Subjects: | Ulex, Gorse, Black carbon, Biochar, Charcoal, Pyrolysis-GC/MS, FTIR, |
Online Access: | http://hdl.handle.net/20.500.12792/2247 http://hdl.handle.net/10261/290403 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|