Mesophyll conductance constrains photosynthesis in three common sclerophyllous species in Central Chile

Background: Quillaja saponaria Mol., Cryptocarya alba Mol. Looser, and Lithraea caustica Molina Hook et Arn., are common sclerophyllous species in Mediterranean Central Chile. Mesophyll conductance, gm, may strongly limit photosynthesis in these semiarid environments. Results: Simultaneous measurements of gas exchange and chlorophyll fluorescence were carried out in 45 nursery plants from these species to determine diffusional and biochemical limitations to photosynthesis. Values of stomatal conductance, gs, were greater than those of mesophyll conductance, gm, while their ratio (gm/gs) was not influenced by species being on average 0.47. Relative limitations posed by mesophyll conductance to photosynthesis, Lm, (0.40 ± 0.02) were high compared to those imposed by stomata, Ls (0.07 ± 0.01). The average CO2 concentration in the intercellular air spaces (Ci) was 32 μmol mol−1 lower than in the atmosphere (Ca), while the average CO2 concentration in the chloroplasts (Cc) was 131 μmol mol−1 lower than Ci independent of species. Maximal rates of Rubisco carboxylation, Vcmax, and maximal electron transport rates driving regeneration of RuBP, Jmax, ranged from 13 to 66 μmol CO2 m−2 s−1 and from 33 to 148 μmol electrons m−2 s−1, respectively, and compare well to averages for C3 plants. Conclusions: Photosynthetic performance was in the series: Q. saponaria > C. alba ≥ L. caustica, which can be attributed first to mesophyll conductance limitations, probably mediated by leaf anatomical traits and then to species specific foliage N partitioning strategies.

Saved in:
Bibliographic Details
Main Authors: Brito, Carla E., Pérez Quezada, Jorge, Bown Intveen, Horacio, Fuentes Espoz, Juan, Franck Berger, Nicolás
Format: Artículo de revista biblioteca
Language:English
Published: Springer 2015-01-07T01:53:05Z
Subjects:Chloroplastic CO2 concentration,
Online Access:https://repositorio.uchile.cl/handle/2250/120391
Tags: Add Tag
No Tags, Be the first to tag this record!