Approaching Study on the Relationship Between Saccharomyces cerevisiae Production of Tyrosol, Hydroxytyrosol, and Melatonin with Volatile Compounds in Fermented Must

Yeasts are feasible and effective bioreactors and, therefore, there is a great interest in their industrial employment for the production of a wide range of molecules. In this study, the production by Saccharomyces cerevisiae of bioactive compounds such as hydroxytyrosol (HT), tyrosol (TYR) and melatonin (MEL) vs. volatile compounds in fermented must was studied. The concentration of the bioactive compounds HT and MEL in fermented must employing different yeast strains revealed that the higher the concentrations, the lower the amount of volatile compounds determined. This inverse correlation was especially remarkable with respect to the production of higher alcohols, especially 2-phenylethanol (2-PE) and esters. Furthermore, the employment of a modified Aro4pK229L S. cerevisiae QA23 yeast strain which overproduces HT, gave rise to fermented must also higher in 2-PE and their corresponding esters but with an outstanding less presence of other important esters such as ethyl hexanoate and ethyl octanoate. Both premises could point out that S. cerevisiae might have different approaches to handling cell stress/toxicity due to their nitrogen metabolism. One detoxifying pathway could be through the production of higher alcohols and these in turn to esters and the other be more related to synthesizing antioxidant molecules such as MEL and HT.

Saved in:
Bibliographic Details
Main Authors: González Ramírez, Marina, Marín Torres, María Mar, Gallardo Fernández, Marta, Planells-Cárcel, Andrés, Bisquert, Ricardo, Valero, Eva, Úbeda, Cristina, Troncoso, Ana María, García Parrilla, María Carmen
Other Authors: Universidad de Sevilla
Format: artículo biblioteca
Language:English
Published: Springer Nature 2023-05-25
Subjects:Fermentation, Hydroxytyrosol, Melatonin, S. cerevisiae, Tyrosol, Volatile compounds,
Online Access:http://hdl.handle.net/10261/310876
http://dx.doi.org/10.13039/100009042
http://dx.doi.org/10.13039/501100011011
https://api.elsevier.com/content/abstract/scopus_id/85160351352
Tags: Add Tag
No Tags, Be the first to tag this record!