Airborne hyperspectral and Sentinel imagery to quantify winter wheat traits through ensemble modeling approaches
24 Pág.
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | artículo biblioteca |
Language: | English |
Published: |
Springer
2023-02-01
|
Subjects: | Grain quality, Machine learning, Nitrogen, Random forest, Short-wave infrared, Yield prediction, |
Online Access: | http://hdl.handle.net/10261/310698 http://dx.doi.org/10.13039/501100011033 http://dx.doi.org/10.13039/501100003329 http://dx.doi.org/10.13039/501100000780 http://dx.doi.org/10.13039/100012818 https://api.elsevier.com/content/abstract/scopus_id/85147176982 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|