Structure of Solvent-free Grafted Nanoparticles: Molecular Dynamics and Density-functional Theory

The structure of solvent-free oligomer-grafted nanoparticles has been investigated using molecular dynamics simulations and density-functional theory. At low temperatures and moderate to high oligomer lengths, the qualitative features of the core particle pair probability, structure factor, and the oligomer brush configuration obtained from the simulations can be explained by a density-functional theory that incorporates the configurational entropy of the space-filling oligomers. In particular, the structure factor at small wave numbers attains a value much smaller than the corresponding hardsphere suspension, the first peak of the pair distribution function is enhanced due to entropic attractions among the particles, and the oligomer brush expands with decreasing particle volume fraction to fill the interstitial space. At higher temperatures, the simulations reveal effects that differ from the theory and are likely caused by steric repulsions of the expanded corona chains.

Saved in:
Bibliographic Details
Main Authors: Chremos, Alexandros, Panagiotopoulos, Athanassios Z., Yu, Hsiu-Yu, Koch, Donald L.
Format: article biblioteca
Language:en_US
Published: American Institute of Physics 2011-09-19
Subjects:oligomer-grafted nanoparticles, molecular dynamics,
Online Access:https://hdl.handle.net/1813/33727
Tags: Add Tag
No Tags, Be the first to tag this record!