Multi-sensor land cover classification with sparsely annotated data based on Convolutional Neural Networks and Self-Distillation

Extensive research studies have been conducted in recent years to exploit the complementarity among multisensor (or multimodal) remote sensing data for prominent applications such as land cover mapping. In order to make a step further with respect to previous studies, which investigate multitemporal SAR and optical data or multitemporal/multiscale optical combinations, here, we propose a deep learning framework that simultaneously integrates all these input sources, specifically multitemporal SAR/optical data and fine-scale optical information at their native temporal and spatial resolutions. Our proposal relies on a patch-based multibranch convolutional neural network (CNN) that exploits different per-source encoders to deal with the specificity of the input signals. In addition, we introduce a new self-distillation strategy to boost the per-source analyses and exploit the interplay among the different input sources. This new strategy leverages the final prediction of the multisource framework to guide the learning of the per-source CNN encoders supporting the network to learn from itself. Experiments are carried out on two real-world benchmarks, namely, the Reunion island (a French overseas department) and the Dordogne study site (a southwest department in France), where the annotated reference data were collected under operational constraints (sparsely annotated ground-truth data). Obtained results providing an overall classification accuracy of about 94% (respectively, 88%) on the Reunion island (respectively, the Dordogne) study site highlight the effectiveness of our framework based on CNNs and self-distillation to combine heterogeneous multisensor remote sensing data and confirm the benefit of multimodal analysis for downstream tasks such as land cover mapping.

Saved in:
Bibliographic Details
Main Authors: Gbodjo, Jean Eudes, Montet, Didier, Ienco, Dino, Gaetano, Raffaele, Dupuy, Stéphane
Format: article biblioteca
Language:eng
Published: IEEE
Subjects:U30 - Méthodes de recherche, P01 - Conservation de la nature et ressources foncières, télédétection, réseau de neurones, cartographie de l'utilisation des terres, cartographie de l'occupation du sol, matériel de télédétection, capteur, http://aims.fao.org/aos/agrovoc/c_6498, http://aims.fao.org/aos/agrovoc/c_37467, http://aims.fao.org/aos/agrovoc/c_9000100, http://aims.fao.org/aos/agrovoc/c_9000094, http://aims.fao.org/aos/agrovoc/c_26062, http://aims.fao.org/aos/agrovoc/c_28279, http://aims.fao.org/aos/agrovoc/c_3081, http://aims.fao.org/aos/agrovoc/c_6543,
Online Access:http://agritrop.cirad.fr/599530/
http://agritrop.cirad.fr/599530/1/Multi-sensor_land_cover_classification_with_sparsely_annotated_data_based_on_Convolutional_Neural_Networks_and_Self-Distillation.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-599530
record_format koha
spelling dig-cirad-fr-5995302024-12-20T15:23:25Z http://agritrop.cirad.fr/599530/ http://agritrop.cirad.fr/599530/ Multi-sensor land cover classification with sparsely annotated data based on Convolutional Neural Networks and Self-Distillation. Gbodjo Jean Eudes, Montet Didier, Ienco Dino, Gaetano Raffaele, Dupuy Stéphane. 2021. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15 p.https://doi.org/10.1109/JSTARS.2021.3119191 <https://doi.org/10.1109/JSTARS.2021.3119191> Multi-sensor land cover classification with sparsely annotated data based on Convolutional Neural Networks and Self-Distillation Gbodjo, Jean Eudes Montet, Didier Ienco, Dino Gaetano, Raffaele Dupuy, Stéphane eng 2021 IEEE IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing U30 - Méthodes de recherche P01 - Conservation de la nature et ressources foncières télédétection réseau de neurones cartographie de l'utilisation des terres cartographie de l'occupation du sol matériel de télédétection capteur http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_37467 http://aims.fao.org/aos/agrovoc/c_9000100 http://aims.fao.org/aos/agrovoc/c_9000094 http://aims.fao.org/aos/agrovoc/c_26062 http://aims.fao.org/aos/agrovoc/c_28279 France La Réunion http://aims.fao.org/aos/agrovoc/c_3081 http://aims.fao.org/aos/agrovoc/c_6543 Extensive research studies have been conducted in recent years to exploit the complementarity among multisensor (or multimodal) remote sensing data for prominent applications such as land cover mapping. In order to make a step further with respect to previous studies, which investigate multitemporal SAR and optical data or multitemporal/multiscale optical combinations, here, we propose a deep learning framework that simultaneously integrates all these input sources, specifically multitemporal SAR/optical data and fine-scale optical information at their native temporal and spatial resolutions. Our proposal relies on a patch-based multibranch convolutional neural network (CNN) that exploits different per-source encoders to deal with the specificity of the input signals. In addition, we introduce a new self-distillation strategy to boost the per-source analyses and exploit the interplay among the different input sources. This new strategy leverages the final prediction of the multisource framework to guide the learning of the per-source CNN encoders supporting the network to learn from itself. Experiments are carried out on two real-world benchmarks, namely, the Reunion island (a French overseas department) and the Dordogne study site (a southwest department in France), where the annotated reference data were collected under operational constraints (sparsely annotated ground-truth data). Obtained results providing an overall classification accuracy of about 94% (respectively, 88%) on the Reunion island (respectively, the Dordogne) study site highlight the effectiveness of our framework based on CNNs and self-distillation to combine heterogeneous multisensor remote sensing data and confirm the benefit of multimodal analysis for downstream tasks such as land cover mapping. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/599530/1/Multi-sensor_land_cover_classification_with_sparsely_annotated_data_based_on_Convolutional_Neural_Networks_and_Self-Distillation.pdf text cc_by info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ https://doi.org/10.1109/JSTARS.2021.3119191 10.1109/JSTARS.2021.3119191 info:eu-repo/semantics/altIdentifier/doi/10.1109/JSTARS.2021.3119191 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1109/JSTARS.2021.3119191 info:eu-repo/semantics/reference/purl/https://doi.org/10.18167/DVN1/TOARDN
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic U30 - Méthodes de recherche
P01 - Conservation de la nature et ressources foncières
télédétection
réseau de neurones
cartographie de l'utilisation des terres
cartographie de l'occupation du sol
matériel de télédétection
capteur
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_37467
http://aims.fao.org/aos/agrovoc/c_9000100
http://aims.fao.org/aos/agrovoc/c_9000094
http://aims.fao.org/aos/agrovoc/c_26062
http://aims.fao.org/aos/agrovoc/c_28279
http://aims.fao.org/aos/agrovoc/c_3081
http://aims.fao.org/aos/agrovoc/c_6543
U30 - Méthodes de recherche
P01 - Conservation de la nature et ressources foncières
télédétection
réseau de neurones
cartographie de l'utilisation des terres
cartographie de l'occupation du sol
matériel de télédétection
capteur
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_37467
http://aims.fao.org/aos/agrovoc/c_9000100
http://aims.fao.org/aos/agrovoc/c_9000094
http://aims.fao.org/aos/agrovoc/c_26062
http://aims.fao.org/aos/agrovoc/c_28279
http://aims.fao.org/aos/agrovoc/c_3081
http://aims.fao.org/aos/agrovoc/c_6543
spellingShingle U30 - Méthodes de recherche
P01 - Conservation de la nature et ressources foncières
télédétection
réseau de neurones
cartographie de l'utilisation des terres
cartographie de l'occupation du sol
matériel de télédétection
capteur
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_37467
http://aims.fao.org/aos/agrovoc/c_9000100
http://aims.fao.org/aos/agrovoc/c_9000094
http://aims.fao.org/aos/agrovoc/c_26062
http://aims.fao.org/aos/agrovoc/c_28279
http://aims.fao.org/aos/agrovoc/c_3081
http://aims.fao.org/aos/agrovoc/c_6543
U30 - Méthodes de recherche
P01 - Conservation de la nature et ressources foncières
télédétection
réseau de neurones
cartographie de l'utilisation des terres
cartographie de l'occupation du sol
matériel de télédétection
capteur
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_37467
http://aims.fao.org/aos/agrovoc/c_9000100
http://aims.fao.org/aos/agrovoc/c_9000094
http://aims.fao.org/aos/agrovoc/c_26062
http://aims.fao.org/aos/agrovoc/c_28279
http://aims.fao.org/aos/agrovoc/c_3081
http://aims.fao.org/aos/agrovoc/c_6543
Gbodjo, Jean Eudes
Montet, Didier
Ienco, Dino
Gaetano, Raffaele
Dupuy, Stéphane
Multi-sensor land cover classification with sparsely annotated data based on Convolutional Neural Networks and Self-Distillation
description Extensive research studies have been conducted in recent years to exploit the complementarity among multisensor (or multimodal) remote sensing data for prominent applications such as land cover mapping. In order to make a step further with respect to previous studies, which investigate multitemporal SAR and optical data or multitemporal/multiscale optical combinations, here, we propose a deep learning framework that simultaneously integrates all these input sources, specifically multitemporal SAR/optical data and fine-scale optical information at their native temporal and spatial resolutions. Our proposal relies on a patch-based multibranch convolutional neural network (CNN) that exploits different per-source encoders to deal with the specificity of the input signals. In addition, we introduce a new self-distillation strategy to boost the per-source analyses and exploit the interplay among the different input sources. This new strategy leverages the final prediction of the multisource framework to guide the learning of the per-source CNN encoders supporting the network to learn from itself. Experiments are carried out on two real-world benchmarks, namely, the Reunion island (a French overseas department) and the Dordogne study site (a southwest department in France), where the annotated reference data were collected under operational constraints (sparsely annotated ground-truth data). Obtained results providing an overall classification accuracy of about 94% (respectively, 88%) on the Reunion island (respectively, the Dordogne) study site highlight the effectiveness of our framework based on CNNs and self-distillation to combine heterogeneous multisensor remote sensing data and confirm the benefit of multimodal analysis for downstream tasks such as land cover mapping.
format article
topic_facet U30 - Méthodes de recherche
P01 - Conservation de la nature et ressources foncières
télédétection
réseau de neurones
cartographie de l'utilisation des terres
cartographie de l'occupation du sol
matériel de télédétection
capteur
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_37467
http://aims.fao.org/aos/agrovoc/c_9000100
http://aims.fao.org/aos/agrovoc/c_9000094
http://aims.fao.org/aos/agrovoc/c_26062
http://aims.fao.org/aos/agrovoc/c_28279
http://aims.fao.org/aos/agrovoc/c_3081
http://aims.fao.org/aos/agrovoc/c_6543
author Gbodjo, Jean Eudes
Montet, Didier
Ienco, Dino
Gaetano, Raffaele
Dupuy, Stéphane
author_facet Gbodjo, Jean Eudes
Montet, Didier
Ienco, Dino
Gaetano, Raffaele
Dupuy, Stéphane
author_sort Gbodjo, Jean Eudes
title Multi-sensor land cover classification with sparsely annotated data based on Convolutional Neural Networks and Self-Distillation
title_short Multi-sensor land cover classification with sparsely annotated data based on Convolutional Neural Networks and Self-Distillation
title_full Multi-sensor land cover classification with sparsely annotated data based on Convolutional Neural Networks and Self-Distillation
title_fullStr Multi-sensor land cover classification with sparsely annotated data based on Convolutional Neural Networks and Self-Distillation
title_full_unstemmed Multi-sensor land cover classification with sparsely annotated data based on Convolutional Neural Networks and Self-Distillation
title_sort multi-sensor land cover classification with sparsely annotated data based on convolutional neural networks and self-distillation
publisher IEEE
url http://agritrop.cirad.fr/599530/
http://agritrop.cirad.fr/599530/1/Multi-sensor_land_cover_classification_with_sparsely_annotated_data_based_on_Convolutional_Neural_Networks_and_Self-Distillation.pdf
work_keys_str_mv AT gbodjojeaneudes multisensorlandcoverclassificationwithsparselyannotateddatabasedonconvolutionalneuralnetworksandselfdistillation
AT montetdidier multisensorlandcoverclassificationwithsparselyannotateddatabasedonconvolutionalneuralnetworksandselfdistillation
AT iencodino multisensorlandcoverclassificationwithsparselyannotateddatabasedonconvolutionalneuralnetworksandselfdistillation
AT gaetanoraffaele multisensorlandcoverclassificationwithsparselyannotateddatabasedonconvolutionalneuralnetworksandselfdistillation
AT dupuystephane multisensorlandcoverclassificationwithsparselyannotateddatabasedonconvolutionalneuralnetworksandselfdistillation
_version_ 1819044464203661312