Multi-sensor land cover classification with sparsely annotated data based on Convolutional Neural Networks and Self-Distillation
Extensive research studies have been conducted in recent years to exploit the complementarity among multisensor (or multimodal) remote sensing data for prominent applications such as land cover mapping. In order to make a step further with respect to previous studies, which investigate multitemporal SAR and optical data or multitemporal/multiscale optical combinations, here, we propose a deep learning framework that simultaneously integrates all these input sources, specifically multitemporal SAR/optical data and fine-scale optical information at their native temporal and spatial resolutions. Our proposal relies on a patch-based multibranch convolutional neural network (CNN) that exploits different per-source encoders to deal with the specificity of the input signals. In addition, we introduce a new self-distillation strategy to boost the per-source analyses and exploit the interplay among the different input sources. This new strategy leverages the final prediction of the multisource framework to guide the learning of the per-source CNN encoders supporting the network to learn from itself. Experiments are carried out on two real-world benchmarks, namely, the Reunion island (a French overseas department) and the Dordogne study site (a southwest department in France), where the annotated reference data were collected under operational constraints (sparsely annotated ground-truth data). Obtained results providing an overall classification accuracy of about 94% (respectively, 88%) on the Reunion island (respectively, the Dordogne) study site highlight the effectiveness of our framework based on CNNs and self-distillation to combine heterogeneous multisensor remote sensing data and confirm the benefit of multimodal analysis for downstream tasks such as land cover mapping.
Main Authors: | , , , , |
---|---|
Format: | article biblioteca |
Language: | eng |
Published: |
IEEE
|
Subjects: | U30 - Méthodes de recherche, P01 - Conservation de la nature et ressources foncières, télédétection, réseau de neurones, cartographie de l'utilisation des terres, cartographie de l'occupation du sol, matériel de télédétection, capteur, http://aims.fao.org/aos/agrovoc/c_6498, http://aims.fao.org/aos/agrovoc/c_37467, http://aims.fao.org/aos/agrovoc/c_9000100, http://aims.fao.org/aos/agrovoc/c_9000094, http://aims.fao.org/aos/agrovoc/c_26062, http://aims.fao.org/aos/agrovoc/c_28279, http://aims.fao.org/aos/agrovoc/c_3081, http://aims.fao.org/aos/agrovoc/c_6543, |
Online Access: | http://agritrop.cirad.fr/599530/ http://agritrop.cirad.fr/599530/1/Multi-sensor_land_cover_classification_with_sparsely_annotated_data_based_on_Convolutional_Neural_Networks_and_Self-Distillation.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-cirad-fr-599530 |
---|---|
record_format |
koha |
spelling |
dig-cirad-fr-5995302024-12-20T15:23:25Z http://agritrop.cirad.fr/599530/ http://agritrop.cirad.fr/599530/ Multi-sensor land cover classification with sparsely annotated data based on Convolutional Neural Networks and Self-Distillation. Gbodjo Jean Eudes, Montet Didier, Ienco Dino, Gaetano Raffaele, Dupuy Stéphane. 2021. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15 p.https://doi.org/10.1109/JSTARS.2021.3119191 <https://doi.org/10.1109/JSTARS.2021.3119191> Multi-sensor land cover classification with sparsely annotated data based on Convolutional Neural Networks and Self-Distillation Gbodjo, Jean Eudes Montet, Didier Ienco, Dino Gaetano, Raffaele Dupuy, Stéphane eng 2021 IEEE IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing U30 - Méthodes de recherche P01 - Conservation de la nature et ressources foncières télédétection réseau de neurones cartographie de l'utilisation des terres cartographie de l'occupation du sol matériel de télédétection capteur http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_37467 http://aims.fao.org/aos/agrovoc/c_9000100 http://aims.fao.org/aos/agrovoc/c_9000094 http://aims.fao.org/aos/agrovoc/c_26062 http://aims.fao.org/aos/agrovoc/c_28279 France La Réunion http://aims.fao.org/aos/agrovoc/c_3081 http://aims.fao.org/aos/agrovoc/c_6543 Extensive research studies have been conducted in recent years to exploit the complementarity among multisensor (or multimodal) remote sensing data for prominent applications such as land cover mapping. In order to make a step further with respect to previous studies, which investigate multitemporal SAR and optical data or multitemporal/multiscale optical combinations, here, we propose a deep learning framework that simultaneously integrates all these input sources, specifically multitemporal SAR/optical data and fine-scale optical information at their native temporal and spatial resolutions. Our proposal relies on a patch-based multibranch convolutional neural network (CNN) that exploits different per-source encoders to deal with the specificity of the input signals. In addition, we introduce a new self-distillation strategy to boost the per-source analyses and exploit the interplay among the different input sources. This new strategy leverages the final prediction of the multisource framework to guide the learning of the per-source CNN encoders supporting the network to learn from itself. Experiments are carried out on two real-world benchmarks, namely, the Reunion island (a French overseas department) and the Dordogne study site (a southwest department in France), where the annotated reference data were collected under operational constraints (sparsely annotated ground-truth data). Obtained results providing an overall classification accuracy of about 94% (respectively, 88%) on the Reunion island (respectively, the Dordogne) study site highlight the effectiveness of our framework based on CNNs and self-distillation to combine heterogeneous multisensor remote sensing data and confirm the benefit of multimodal analysis for downstream tasks such as land cover mapping. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/599530/1/Multi-sensor_land_cover_classification_with_sparsely_annotated_data_based_on_Convolutional_Neural_Networks_and_Self-Distillation.pdf text cc_by info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ https://doi.org/10.1109/JSTARS.2021.3119191 10.1109/JSTARS.2021.3119191 info:eu-repo/semantics/altIdentifier/doi/10.1109/JSTARS.2021.3119191 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1109/JSTARS.2021.3119191 info:eu-repo/semantics/reference/purl/https://doi.org/10.18167/DVN1/TOARDN |
institution |
CIRAD FR |
collection |
DSpace |
country |
Francia |
countrycode |
FR |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-cirad-fr |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
Biblioteca del CIRAD Francia |
language |
eng |
topic |
U30 - Méthodes de recherche P01 - Conservation de la nature et ressources foncières télédétection réseau de neurones cartographie de l'utilisation des terres cartographie de l'occupation du sol matériel de télédétection capteur http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_37467 http://aims.fao.org/aos/agrovoc/c_9000100 http://aims.fao.org/aos/agrovoc/c_9000094 http://aims.fao.org/aos/agrovoc/c_26062 http://aims.fao.org/aos/agrovoc/c_28279 http://aims.fao.org/aos/agrovoc/c_3081 http://aims.fao.org/aos/agrovoc/c_6543 U30 - Méthodes de recherche P01 - Conservation de la nature et ressources foncières télédétection réseau de neurones cartographie de l'utilisation des terres cartographie de l'occupation du sol matériel de télédétection capteur http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_37467 http://aims.fao.org/aos/agrovoc/c_9000100 http://aims.fao.org/aos/agrovoc/c_9000094 http://aims.fao.org/aos/agrovoc/c_26062 http://aims.fao.org/aos/agrovoc/c_28279 http://aims.fao.org/aos/agrovoc/c_3081 http://aims.fao.org/aos/agrovoc/c_6543 |
spellingShingle |
U30 - Méthodes de recherche P01 - Conservation de la nature et ressources foncières télédétection réseau de neurones cartographie de l'utilisation des terres cartographie de l'occupation du sol matériel de télédétection capteur http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_37467 http://aims.fao.org/aos/agrovoc/c_9000100 http://aims.fao.org/aos/agrovoc/c_9000094 http://aims.fao.org/aos/agrovoc/c_26062 http://aims.fao.org/aos/agrovoc/c_28279 http://aims.fao.org/aos/agrovoc/c_3081 http://aims.fao.org/aos/agrovoc/c_6543 U30 - Méthodes de recherche P01 - Conservation de la nature et ressources foncières télédétection réseau de neurones cartographie de l'utilisation des terres cartographie de l'occupation du sol matériel de télédétection capteur http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_37467 http://aims.fao.org/aos/agrovoc/c_9000100 http://aims.fao.org/aos/agrovoc/c_9000094 http://aims.fao.org/aos/agrovoc/c_26062 http://aims.fao.org/aos/agrovoc/c_28279 http://aims.fao.org/aos/agrovoc/c_3081 http://aims.fao.org/aos/agrovoc/c_6543 Gbodjo, Jean Eudes Montet, Didier Ienco, Dino Gaetano, Raffaele Dupuy, Stéphane Multi-sensor land cover classification with sparsely annotated data based on Convolutional Neural Networks and Self-Distillation |
description |
Extensive research studies have been conducted in recent years to exploit the complementarity among multisensor (or multimodal) remote sensing data for prominent applications such as land cover mapping. In order to make a step further with respect to previous studies, which investigate multitemporal SAR and optical data or multitemporal/multiscale optical combinations, here, we propose a deep learning framework that simultaneously integrates all these input sources, specifically multitemporal SAR/optical data and fine-scale optical information at their native temporal and spatial resolutions. Our proposal relies on a patch-based multibranch convolutional neural network (CNN) that exploits different per-source encoders to deal with the specificity of the input signals. In addition, we introduce a new self-distillation strategy to boost the per-source analyses and exploit the interplay among the different input sources. This new strategy leverages the final prediction of the multisource framework to guide the learning of the per-source CNN encoders supporting the network to learn from itself. Experiments are carried out on two real-world benchmarks, namely, the Reunion island (a French overseas department) and the Dordogne study site (a southwest department in France), where the annotated reference data were collected under operational constraints (sparsely annotated ground-truth data). Obtained results providing an overall classification accuracy of about 94% (respectively, 88%) on the Reunion island (respectively, the Dordogne) study site highlight the effectiveness of our framework based on CNNs and self-distillation to combine heterogeneous multisensor remote sensing data and confirm the benefit of multimodal analysis for downstream tasks such as land cover mapping. |
format |
article |
topic_facet |
U30 - Méthodes de recherche P01 - Conservation de la nature et ressources foncières télédétection réseau de neurones cartographie de l'utilisation des terres cartographie de l'occupation du sol matériel de télédétection capteur http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_37467 http://aims.fao.org/aos/agrovoc/c_9000100 http://aims.fao.org/aos/agrovoc/c_9000094 http://aims.fao.org/aos/agrovoc/c_26062 http://aims.fao.org/aos/agrovoc/c_28279 http://aims.fao.org/aos/agrovoc/c_3081 http://aims.fao.org/aos/agrovoc/c_6543 |
author |
Gbodjo, Jean Eudes Montet, Didier Ienco, Dino Gaetano, Raffaele Dupuy, Stéphane |
author_facet |
Gbodjo, Jean Eudes Montet, Didier Ienco, Dino Gaetano, Raffaele Dupuy, Stéphane |
author_sort |
Gbodjo, Jean Eudes |
title |
Multi-sensor land cover classification with sparsely annotated data based on Convolutional Neural Networks and Self-Distillation |
title_short |
Multi-sensor land cover classification with sparsely annotated data based on Convolutional Neural Networks and Self-Distillation |
title_full |
Multi-sensor land cover classification with sparsely annotated data based on Convolutional Neural Networks and Self-Distillation |
title_fullStr |
Multi-sensor land cover classification with sparsely annotated data based on Convolutional Neural Networks and Self-Distillation |
title_full_unstemmed |
Multi-sensor land cover classification with sparsely annotated data based on Convolutional Neural Networks and Self-Distillation |
title_sort |
multi-sensor land cover classification with sparsely annotated data based on convolutional neural networks and self-distillation |
publisher |
IEEE |
url |
http://agritrop.cirad.fr/599530/ http://agritrop.cirad.fr/599530/1/Multi-sensor_land_cover_classification_with_sparsely_annotated_data_based_on_Convolutional_Neural_Networks_and_Self-Distillation.pdf |
work_keys_str_mv |
AT gbodjojeaneudes multisensorlandcoverclassificationwithsparselyannotateddatabasedonconvolutionalneuralnetworksandselfdistillation AT montetdidier multisensorlandcoverclassificationwithsparselyannotateddatabasedonconvolutionalneuralnetworksandselfdistillation AT iencodino multisensorlandcoverclassificationwithsparselyannotateddatabasedonconvolutionalneuralnetworksandselfdistillation AT gaetanoraffaele multisensorlandcoverclassificationwithsparselyannotateddatabasedonconvolutionalneuralnetworksandselfdistillation AT dupuystephane multisensorlandcoverclassificationwithsparselyannotateddatabasedonconvolutionalneuralnetworksandselfdistillation |
_version_ |
1819044464203661312 |