Simulating the effects of different potassium and water supply regimes on soil water content and water table depth over a rotation of a tropical Eucalyptus grandis plantation

Although large amounts of potassium (K) are applied in tropical crops and planted forests, little is known about the interaction between K nutrition and water supply regimes on water resources in tropical regions. This interaction is a major issue because climate change is expected to increase the length of drought periods in many tropical regions and soil water availability in deep soil layers is likely to have a major influence on tree growth during dry periods in tropical planted forests. A process-based model (MAESPA) was parameterized in a throughfall exclusion experiment in Brazil to gain insight into the combined effects of K deficiency and rainfall reduction (37% throughfall exclusion) on the water used by the trees, soil water storage and water table fluctuations over the first 4.5 years after planting Eucalyptus grandis trees. A comparison of canopy transpiration in each plot with the values predicted for the same soil with the water content maintained at field capacity, made it possible to calculate a soil-driven tree water stress index for each treatment. Compared to K-fertilized trees with undisturbed rainfall (+K+W), canopy transpiration was 40% lower for K deficiency (−K+W), 20% lower for W deficit (+K−W) and 36% lower for combined K deficiency and W deficit (−K−W) on average. Water was withdrawn in deeper soil layers for −W than for +W, particularly over dry seasons. Under contrasted K availability, water withdrawal was more superficial for −K than for +K. Mean soil water content down to 18 m below surface (mbs) was 24% higher for −K+W than for +K+W from 2 years after planting (after canopy closure), while it was 24% lower for +K−W and 12% lower for −K−W than for +K+W. The soil-driven tree water stress index was 166% higher over the first 4.5 years after planting for −W than for +W, 76% lower for −K than for +K, and 14% lower for −K−W than for +K+W. Over the study period, deep seepage was higher by 371 mm yr−1 (+122%) for −K than for +K and lower by 200 mm yr−1 (−66%) for −W than for +W. Deep seepage was lower by 44% for −K−W than for +K+W. At the end of the study period, the model predicted a higher water table for −K (10 mbs for −K+W and 16 mbs for −K−W) than for +K (16 mbs for +K+W and 18 mbs for +K−W). Our study suggests that flexible fertilization regimes could contribute to adjusting the local trade-off between wood production and demand for soil water resources in planted forests.

Saved in:
Bibliographic Details
Main Authors: Christina, Mathias, Le Maire, Guerric, Nouvellon, Yann, Vezy, Rémi, Bordon, B., Battie Laclau, Patricia, Gonçalves, José Leonardo M., Delgado-Rojas, Juan Sinforiano, Bouillet, Jean-Pierre, Laclau, Jean-Paul
Format: article biblioteca
Language:eng
Subjects:K10 - Production forestière, F04 - Fertilisation, Eucalyptus, plantation forestière, potassium, enracinement, besoin en eau, croissance, stress dû à la sécheresse, évapotranspiration, fertilisation, transport des substances nutritives, http://aims.fao.org/aos/agrovoc/c_2683, http://aims.fao.org/aos/agrovoc/c_3048, http://aims.fao.org/aos/agrovoc/c_6139, http://aims.fao.org/aos/agrovoc/c_6649, http://aims.fao.org/aos/agrovoc/c_8323, http://aims.fao.org/aos/agrovoc/c_3394, http://aims.fao.org/aos/agrovoc/c_24993, http://aims.fao.org/aos/agrovoc/c_2741, http://aims.fao.org/aos/agrovoc/c_10795, http://aims.fao.org/aos/agrovoc/c_5272, http://aims.fao.org/aos/agrovoc/c_1070,
Online Access:http://agritrop.cirad.fr/586780/
http://agritrop.cirad.fr/586780/7/1-s2.0-S0378112717314731-main.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!