Extraction d'arguments de relations n-aires dans les textes guidée par une RTO de domaine
Aujourd'hui, la communauté scientifique a l'opportunité de partager des connaissances et d'accéder à de nouvelles informations à travers les documents publiés et stockés dans les bases en ligne du web. Dans ce contexte, la valorisation des données disponibles reste un défi majeur pour permettre aux experts de les réutiliser et les analyser afin de produire de la connaissance du domaine. Pour être valorisées, les données pertinentes doivent être extraites des documents puis structurées. Nos travaux s'inscrivent dans la problématique de la capitalisation des données expérimentales issues des articles scientifiques, sélectionnés dans des bases en ligne, afin de les réutiliser dans des outils d'aide à la décision. Les mesures expérimentales (par exemple, la perméabilité à l'oxygène d'un emballage ou le broyage d'une biomasse) réalisées sur différents objets d'études (par exemple, emballage ou procédé de bioraffinerie) sont représentées sous forme de relations n-aires dans une Ressource Termino-Ontologique (RTO). La RTO est modélisée pour représenter les relations n-aires en associant une partie terminologique et/ou linguistique aux ontologies afin d'établir une distinction claire entre la manifestation linguistique (le terme) et la notion qu'elle dénote (le concept). La thèse a pour objectif de proposer une contribution méthodologique d'extraction automatique ou semi-automatique d'arguments de relations n-aires provenant de documents textuels afin de peupler la RTO avec de nouvelles instances. Les méthodologies proposées exploitent et adaptent conjointement des approches de Traitement automatique de la Langue (TAL) et de fouille de données, le tout s'appuyant sur le support sémantique apporté par la RTO de domaine. De manière précise, nous cherchons, dans un premier temps, à extraire des termes, dénotant les concepts d'unités de mesure, réputés difficiles à identifier du fait de leur forte variation typographique dans les textes. Après la localisation de ces derniers par des méthodes de classification automatique, les variants d'unités sont identifiés en utilisant des mesures d'édition originales. La seconde contribution méthodologique de nos travaux repose sur l'adaptation et la combinaison de méthodes de fouille de données (extraction de motifs et règles séquentiels) et d'analyse syntaxique pour identifier les instances d'arguments de la relation n-aire recherchée.
Main Author: | |
---|---|
Format: | thesis biblioteca |
Language: | fre |
Published: |
Université de Montpellier
|
Subjects: | C30 - Documentation et information, U30 - Méthodes de recherche, 000 - Autres thèmes, |
Online Access: | http://agritrop.cirad.fr/582845/ http://agritrop.cirad.fr/582845/1/Cirad_These_Berrahou_2015.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|