Generalization of the partitioning of shannon diversity
Traditional measures of diversity, namely the number of species as well as Simpson's and Shannon's indices, are particular cases of Tsallis entropy. Entropy decomposition, i.e. decomposing gamma entropy into alpha and beta components, has been previously derived in the literature. We propose a generalization of the additive decomposition of Shannon entropy applied to Tsallis entropy. We obtain a self-contained definition of beta entropy as the information gain brought by the knowledge of each community composition. We propose a correction of the estimation bias allowing to estimate alpha, beta and gamma entropy from the data and eventually convert them into true diversity. We advocate additive decomposition in complement of multiplicative partitioning to allow robust estimation of biodiversity.
Main Authors: | , , , , |
---|---|
Format: | article biblioteca |
Language: | eng |
Published: |
PLOS
|
Subjects: | P01 - Conservation de la nature et ressources foncières, F40 - Écologie végétale, U10 - Informatique, mathématiques et statistiques, biodiversité, mesure (activité), modèle mathématique, espèce, forêt tropicale humide, étude de cas, http://aims.fao.org/aos/agrovoc/c_33949, http://aims.fao.org/aos/agrovoc/c_4668, http://aims.fao.org/aos/agrovoc/c_24199, http://aims.fao.org/aos/agrovoc/c_7280, http://aims.fao.org/aos/agrovoc/c_7976, http://aims.fao.org/aos/agrovoc/c_24392, http://aims.fao.org/aos/agrovoc/c_3093, http://aims.fao.org/aos/agrovoc/c_3081, |
Online Access: | http://agritrop.cirad.fr/573070/ http://agritrop.cirad.fr/573070/1/document_573070.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|