Resilience to fire of phylogenetic diversity across biological domains

Fire alters the structure and composition of above‐ and belowground communities with concurrent shifts in phylogenetic diversity. The inspection of postfire trends in the diversity of ecological communities incorporating phylogenetic information allows to better understand the mechanisms driving fire resilience. While fire reduces plant phylogenetic diversity based on the recruitment of evolutionarily related species with postfire seed persistence, it increases that of soil microbes by limiting soil resources and changing the dominance of competing microbes. Thus, during postfire community reassembly, plant and soil microbes might experience opposing temporal trends in their phylogenetic diversity that are linked through changes in the soil conditions. We tested this hypothesis by investigating the postfire evolution of plant and soil microbial (fungi, bacteria and archaea) communities across three 20‐year chronosequences. Plant phylogenetic diversity increased with time since fire as pioneer seeders facilitate the establishment of distantly related late‐successional shrubs. The postfire increase in plant phylogenetic diversity fostered plant productivity, eventually recovering soil organic matter. These shifts over time in the soil conditions explained the postfire restoration of fungal and bacterial phylogenetic diversity, which decreased to prefire levels, suggesting that evolutionarily related taxa with high relative fitness recover their competitive superiority during community reassembly. The resilience to fire of phylogenetic diversity across biological domains helps preserve the evolutionary history stored in our ecosystems.

Saved in:
Bibliographic Details
Main Authors: Pérez-Valera, Eduardo, Verdú, Miguel, Navarro-Cano, J. A., Goberna, M.
Other Authors: Ministerio de Economía y Competitividad (España)
Format: artículo biblioteca
Language:English
Published: John Wiley & Sons 2018-07
Subjects:Archaea, Bacteria, Chronosequence, Community structure, Fungi, Plants,
Online Access:http://hdl.handle.net/10261/183151
http://dx.doi.org/10.13039/501100003329
http://dx.doi.org/10.13039/501100003359
Tags: Add Tag
No Tags, Be the first to tag this record!