Skim milk protein distribution as a result of very high hydrostatic pressure

This work studies the micellar size and the distribution of caseins, major and minor whey proteins in different fractions of skim milk treated up to 900 MPa for 5 min. Transmission electron microscopy showed that the smallest casein micelles were formed around 450 MPa with no variations at higher pressures. The changes found in micellar size correlated with the concentration of soluble casein, because treatments at 250 MPa significantly enhanced the level of non-sedimentable casein while, between 700 and 900 MPa, there were no further increases with respect to lower pressures. There was a severe β-lactoglobulin (β-Lg) denaturation at pressures ≥ 700 MPa, which reached 77–87%. α-Lactalbumin (α-La) was stable up to 550 MPa, but it denatured at higher pressures. The content of soluble lactoferrin (Lf) decreased with pressure, particularly from 550 to 800 MPa, while that of secretory IgA (sIgA) progressively decreased from 250 up to 700 MPa. Our results indicated that treatment of milk at very high pressures, from 700 to 900 MPa, did not reduce micellar size nor released more soluble casein with respect to treatments at lower pressures (250–550 MPa). However, these treatments led to a severe denaturation of the whey proteins, in particular of β-Lg and the minor proteins Lf and sIgA. The possibility of using high hydrostatic pressure to obtain a soluble milk fraction with a casein and whey protein composition similar to that of human milk is discussed.

Saved in:
Bibliographic Details
Main Authors: Bravo, Francisca I., Felipe, Xavier, López-Fandiño, Rosina, Molina, Elena
Format: artículo biblioteca
Published: Elsevier 2015
Subjects:Whey proteins, Very high hydrostatic pressure, Casein, Milk protein distribution, Lactoferrin, Secretory IgA,
Online Access:http://hdl.handle.net/10261/149976
Tags: Add Tag
No Tags, Be the first to tag this record!