Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation

Cassava (Manihot esculenta Crantz) is an important staple food crop in Africa and South America; however, ubiquitous deleterious mutations may severely decrease its fitness. To evaluate these deleterious mutations, we constructed a cassava haplotype map through deep sequencing 241 diverse accessions and identified >28 million segregating variants. We found that (i) although domestication has modified starch and ketone metabolism pathways to allow for human consumption, the concomitant bottleneck and clonal propagation have resulted in a large proportion of fixed deleterious amino acid changes, increased the number of deleterious alleles by 26%, and shifted the mutational burden toward common variants; (ii) deleterious mutations have been ineffectively purged, owing to limited recombination in the cassava genome; (iii) recent breeding efforts have maintained yield by masking the most damaging recessive mutations in the heterozygous state but have been unable to purge the mutation burden; such purging should be a key target in future cassava breeding.

Saved in:
Bibliographic Details
Main Authors: Ramu, P., Esuma, W., Kawuki, R.S., Rabbi, Ismail Y., Egesi, Chiedozie N., Bredeson, J.V., Bart, R.S., Verma, J., Buckler, E.S., Lu, F
Format: Journal Article biblioteca
Language:English
Published: Springer 2017-06
Subjects:genomics, plant genetics, population genetics, cassava, deleterious mutations, haplotype map, clonal propagation,
Online Access:https://hdl.handle.net/10568/81024
https://doi.org/10.1038/ng.3845
Tags: Add Tag
No Tags, Be the first to tag this record!