Expression profiling and functional characterization of miR-192 throughout sheep skeletal muscle development

MicroRNAs (miRNAs) are evolutionarily conserved, small, non-coding RNAs that have emerged as key regulators of myogenesis. Here, we examined the miRNA expression profiles of developing sheep skeletal muscle using a deep sequencing approach. We detected 2,396 miRNAs in the sheep skeletal muscle tissues. Of these, miR-192 was found to be up-regulated in prenatal skeletal muscle, but was down-regulated postnatally. MiR-192 expression also decreased during the myogenic differentiation of sheep satellite cells (SCs). MiR-192 overexpression significantly attenuated SCs myogenic differentiation but promoted SCs proliferation, whereas miR-192 inhibition enhanced SCs differentiation but suppressed SCs proliferation. We found that miR-192 targeted retinoblastoma 1 (RB1), a known regulator of myogenesis. Furthermore, knockdown of RB1 in cultured cells significantly inhibited SCs myogenic differentiation but accelerated SCs proliferation, confirming the role of RB1 in myogenesis. Taken together, our findings enrich the ovine miRNA database, and outline the miRNA transcriptome of sheep during skeletal muscle development. Moreover, we show that miR-192 affects SCs proliferation and myogenic differentiation via down-regulation of RB1.

Saved in:
Bibliographic Details
Main Authors: Qian-Jun Zhao, Ye Kang, Hong-Yang Wang, Weijun, Guan, Xiang-Chen Li, Lin Jiang, Xiao-Hong He, Yabin Pu, Han Jianlin, Yue-Hui Ma
Format: Journal Article biblioteca
Language:English
Published: Springer 2016-07-25
Subjects:muscles, sheep, skeletal development,
Online Access:https://hdl.handle.net/10568/78439
https://doi.org/10.1038/srep30281
Tags: Add Tag
No Tags, Be the first to tag this record!