Hydrology, hydrobiology and environmental pollution in the southern Caspian Sea

The project investigates the relationship between the biological parameters (phytoplankton, zooplankton, Macrobenthic and ctenophore- Mnemiopsis leidyi) and environmental parameters, nutrients and environmental pollutants (oil, pesticides, heavy metals, and detergents) in water and sediment, at the southern Caspian Sea in 2010-2011. Sampling was carried out in four seasons (spring, summer, autumn and winter) and in eight transects perpendicular to the coast (Astara, Anzali, Sefidroud, Tonekabon, Noshahr, Babolsar, Amir Abad and Bandar Turkmen). Samples were collected from the different layers at depths of 5, 10, 20, 50 and 100 meters. The relationship between biological and environmental parameters surveyed through parametric and multivariate statistical methods. Result showed that the annual mean of environmental parameters and nutrients concentration such as water temperature, pH, transparency, DO, ammonium, nitrate, inorganic nitrogen (DIN), organic nitrogen (DON), inorganic phosphorus (DIP), organic phosphorus (DOP) and soluble silicon (DSi) at euphotic layer were 16.70±0.43 (ºC), 8.38±0.01 (m), 5.48±0.05 (ml/l), 1.52±0.06 (µM), 1.80±0.08 (µM), 3.41±0.10 (µM), 43.3±0.9 (µM), 0.32±0.01 (µM), 0.52±0.02 (µM), 8.88±0.22 (µM), respectively. Meanwhile, annual mean of environmental pollutant such as PAHs and OCPs in sediment were recorded 0.88±0.16 (µg/g.dw) and 9.78±2.20 (µg/g.dw), respectively. In addition, annual mean of heavy metals such as Zn, Cu, Ni, Pb and Hg in sediment were obtained 247±46 (µg/g.dw), 29.5±1.5 (µg/g.dw), 49.9±4.9 (µg/g.dw) and 0.179±0.800 (µg/g.dw), respectively. Annual mean abundance of biological parameters namely phytoplankton, zooplankton and M. leidyi (0-20m) at photic layer were 238±17 (million cells/m^3), 4808±362 (individuals/m^3) and 26±3 (individuals /m^3) respectively, and for biomass were 747±60 (mg/m3), 44.3±5.0 (mg/m^3), 2.15±0.31 (g/m^3). Annual mean abundance of those biological parameters at below of photic layer (50-100m) were 104±35 (million cells/m^3), 843±92 (individuals/m^3) and 2±1 (individuals /m^3) respectively, and for biomass were 412±93 (mg/m3), 9.1±1.0 (mg/m^3), 0.15±0.05 (g/m^3). Annual mean abundance and biomass of macrobenthic were 5073±1225 (individuals /m^2) and 144±73 (g/m^2), respectively. Annual mean annual percentage of TOM, Gravel, Sand and Silt-clay were recorded 3.74±0.26, 0.92±0.32 , 22.51±4.97 and 76.67±5.01, respectively. The stratification of water column was strongly based on gradient of water temperature and the phenomenon (difference of temperature between water layers) was more clear in this study compared to previous years. Temperature and biological factors (phytoplankton) were effected on changes of dissolved oxygen at warm and cold seasons summer and winter), but coefficient factor of temperature was higher than biological factors in winter. The nutrients concentration (with the exception of inorganic phosphorus) in different years 2008-2009, 2009-2010 and 2010-2011 increased compared to 1995-1996 (the year of stability of ecosystem). One of the reason attribute to the presence of the ctenophore (M. leidyi) in Caspian Sea after 1999. The annual correlation of phytoplankton abundance and temperature was reversed but seasonal pattern was varied at each season (within a year). In this study, the Caspian Sea contained the conditions of nitrogen limitation (55%) and nitrogenphosphorus limitation (6-43%) as well as phosphate limitation (2-39%) (DIN/DIP>20) . Inspite of no silica limitation (sufficient concentration of silica) in the Caspian ecosystem, Bacillariophyta was not dominance phylum at whole seasons.It seems that other factors such as the temperature changes of seasons, the effects of predation and feeding of the next chains of the food chain, the difference of the ability in the growth and reproduction, competition (uptake of nutrients) in dfferent groups of phytoplankton and stoichiometry of the nutrients (nitrogen and phosphorus) were caused of non-diatoms dominance at most seasons. As, Pyrrophyta and Bacillariophyta were dominant at spring and winter, respectively and Cyanophyta was pre-dominant at summer and autumn. Multivariate analysis showed the significant correlation between Coppepoda and oxygen and water temperature only. The other gropus of zooplankton did not show any significant correlation with environmental parameters. It might be due to stronger effects of other parameters such as food and predators on different groups of zooplankton at each season and abundance of zooplankton groups indirectly affected by environmental parameters. In this study, Shannon diversity indices of zooplankton and phytoplankton were closer to 1995-96 values and showed diferent trend compared to 2009-2010. However it is not enough reason for recovery of ecosystem in to the stability of Caspian Sea. It is because of other negative evidiance such as strong increasing trend of phytoplankton to zooplankton biomass ratio in all seasons and regions particularly the 2009-2010 and 2010-2011 years compared to 1995-96 (the year of stable ecosystem). In the other word, the balance between the biomass of the first and second of the food chain has been disturbed and the value was much much higher than the year of stable ecosystem in 1995-96. Based on multivariate analyses, there was not significant correlation between zooplankton groups and some edible phytoplankton species, vise versa zooplankton groups consumed some unsuitable species of phytoplankton (based on size, nutritional value, difficulty of digestion and absorption, the potential of toxicity and harmfulness). The lack of expected relationship and routine rules of nutritional between zooplankton and phytoplankton are the more resons of instability in the ecosystem. In current study, dominant group of macrobenthos (polychaeta) observed in depths less than 20 meters which the percentage of silt-clay and sand were 74 and 26, respectively. It seems that this ratio of silt-caly and sand was suitable for their living and accumulation. PCA analysis showed that increasing the percentage of TOM and siltclay accompanied to the decreasing of macrobenthos abundance while increasing the temperature, dissolved oxygen and pH had a positive effect on macrobenthos abundance in most seasons. Increasing the abundance of macrobenthos at all seasons (except spring) would not be a strong indication of improvement of Caspian ecosystem after the ctenophore introduction stress and unfavorable evidence such as low Shannon diversity index observe in the results. Meanwhile, in the present study, Streblospio and oligochaeta (invasive growth and advantage to the food uptake and habitat and sediment seeding) similar to the years of 2008-2009, 2009-2010 still were dominant groups insteade of Gammaridae family (feeding on suspended solids). This means that sediment has a noteworthy amount of organic matter which indicate to the trophic level of ecosystem tend to eutrophy level. The comparison of results on this study to previous studies on biological parameters (phytoplankton, zooplankton and macrobenthos) indicating to the persistence of stress (such as biological and anthropogenic) on their changing population patterns (quantitative relationships between species) and structural patterns (species composition and seasonal succession of dominant species). In other words, many species (both macroscopic and microscopic) of the Caspian Sea are still vulnerable to complications of stressor factors. In order to protection and sustainable exploitation of this worth ecosystem it is necessary to look more serious studies and practical techniques from the relevant organizations in this area.

Saved in:
Bibliographic Details
Main Authors: Nasrollahzadeh Saravi, Hassan, Najafpour, Sh., Roshan Tabari, H., Tahami, M., Hashemian, F., Pouring, A., Yousefian, N., Naderi, M., Soleimani Rodi, A.
Format: monograph biblioteca
Language:Persian
Published: Iranian Fisheries Science Research Institute 2016
Subjects:Ecology, Pollution, Iran, Caspian Sea, Astara, Anzali, Tonekabon, Noshahr, Babolsar,
Online Access:http://hdl.handle.net/1834/40036
Tags: Add Tag
No Tags, Be the first to tag this record!