Scalable synthesis of ultrathin MoS2 membranes for dye desalination.

Molybdenum disulfide (MoS2) has been fabricated into thin-film composite (TFC) membranes for dye desalination due to its excellent underwater stability and tunable interlay spacing. However, it remains challenging to synthesize thin layers of MoS2 with high water permeance and high dye rejection due to the difficulty in fabricating large crystalline sheets or exfoliation. Herein, we report a scalable method coupling bottom-up hydrothermal synthesis and top-down ultrasonic exfoliation to obtain well-dispersed MoS2 nanosheets and a vacuum filtration method to prepare ultrathin membranes (thickness: 30 ? 60 nm) for dye desalination. The MoS2 nanosheets and membranes are thoroughly characterized for their chemistries and nanostructures. The membrane with 60-nm MoS2 exhibits water permeance of 32 LMH/bar, Na2SO4 rejection of 2.3%, and Direct Red-80 rejection of 99.0%. The MoS2 membranes exhibit dye desalination performance superior to state-of-the-art commercial polyamide membranes and many leading membranes based on two-dimensional materials.

Saved in:
Bibliographic Details
Main Authors: SCHNEIDER, R., TANDEL, A. M., DENGA, E., CORREA, D. S.
Other Authors: Nanotechnology National Laboratory for Agriculture (LNNA); Department of Chemical and Biological Engineering, University at Buffalo; Department of Chemical and Biological Engineering, University at Buffalo; DANIEL SOUZA CORREA, CNPDIA.
Format: Artigo de periódico biblioteca
Language:Ingles
English
Published: 2023-09-01
Subjects:MoS2, Membranes, Dye desalination, Hydrothermal reaction, Ultrasonic exfoliation,
Online Access:http://www.alice.cnptia.embrapa.br/alice/handle/doc/1156320
Tags: Add Tag
No Tags, Be the first to tag this record!