SiRCub - Brazilian Agricultural Crop Recognition System.

This paper presents a novel approach to classify agricultural crops using NDVI time series. The novelty lies in i) extracting a set of features from the each and every NDVI curve, and ii) using them to train a crop classification model using a Support Vector Machine (SVM). Specifically, we use the TIMESAT program package to: 1) smooth the time series, 2) decompose them into agricultural seasons?a season is the period between sowing and harvesting?, and 3) extract the features for each season.

Saved in:
Bibliographic Details
Main Authors: TOMÀS, J. C., FARIA, F. A., ESQUERDO, J. C. D. M., COUTINHO, A. C., MEDEIROS, C. B.
Other Authors: JORDI CREUS TOMÀS, IC/Unicamp; FABIO AUGUSTO FARIA, IC/Unicamp; JÚLIO CÉSAR DALLA MORA ESQUERDO, CNPTIA; ALEXANDRE CAMARGO COUTINHO, CNPTIA; CLAUDIA BAUZER MEDEIROS, IC/UNICAMP.
Format: Anais e Proceedings de eventos biblioteca
Language:English
eng
Published: 2015-11-17
Subjects:Séries temporais, LULC, Cobertura da terra, NDVI, Support Vector Machine, Uso da terra, Time series analysis, Land use, Land cover,
Online Access:http://www.alice.cnptia.embrapa.br/alice/handle/doc/1028693
Tags: Add Tag
No Tags, Be the first to tag this record!