Next Generation Fire Severity Mapping (Image Service)

The geospatial products described and distributed here depict the probability of high-severity fire, if a fire were to occur, for several ecoregions in the contiguous western US. The ecological effects of wildland fire � also termed the fire severity � are often highly heterogeneous in space and time. This heterogeneity is a result of spatial variability in factors such as fuel, topography, and climate (e.g. mean annual temperature). However, temporally variable factors such as daily weather and climatic extremes (e.g. an unusually warm year) also may play a key role. Scientists from the US Forest Service Rocky Mountain Research Station and the University of Montana conducted a study in which observed data were used to produce statistical models describing the probability of high severity fire as a function of fuel, topography, climate, and fire weather. Observed data from over 2000 fires (from 2002-2015) were used to build individual models for each of 19 ecoregions in the contiguous US (see Parks et al. 2018, Figure 1). High severity fire was measured using a fire severity metric termed the relativized burn ratio, which uses pre- and post-fire Landsat imagery to measure fire-induced ecological change. Fuel included pre-fire metrics of live fuel amount such as NDVI. Topography included factors such as slope and potential solar radiation. Climate summarized 30-year averages of factors such as mean summer temperature that spatially vary across the study area. Lastly, fire weather incorporated temporally variable factors such as daily and annual temperature. In turn, these statistical models were used to generate "wall-to-wall" maps depicting the probability of high severity fire, if a fire were to occur, for 13 of the 19 ecoregions. Maps were not produced for ecoregions in which model quality was deemed inadequate. All maps use fuel data representing the year 2016 and therefore provide a fairly up-to-date assessment of the potential for high severity fire. For those ecoregions in which the relative influence of fire weather was fairly strong (n=6), two additional maps were produced, one depicting the probability of high severity fire under moderate weather and the other under extreme weather. An important consideration is that only pixels defined as forest were used to build the models; consequently maps exclude pixels considered non-forest.<div><br>This record was taken from the USDA Enterprise Data Inventory that feeds into the <a href="https://data.gov">https://data.gov</a> catalog. Data for this record includes the following resources:</div><ul> <li> <a href="https://www.arcgis.com/sharing/rest/content/items/870b0a1777d5455faab124e7db96824b/info/metadata/metadata.xml?format=iso19139">ISO-19139 metadata</a></li> <li> <a href="https://data-usfs.hub.arcgis.com/datasets/usfs::next-generation-fire-severity-mapping-image-service">ArcGIS Hub Dataset</a></li> <li> <a href="https://apps.fs.usda.gov/fsgisx01/rest/services/RDW_Wildfire/RMRS_NextGenerationFireSeverityMapping/ImageServer">ArcGIS GeoService</a></li></ul><div>For complete information, please visit <a href="https://data.gov">https://data.gov</a>.</div>

Saved in:
Bibliographic Details
Main Author: U.S. Forest Service (17476914)
Format: Dataset biblioteca
Published: 2019
Subjects:Environmental sciences, RMRS, Fire, JFSP, fire effects, fire severity, fire ecology, wildland fire, joint fire science program, burn severity, environment, Open Data,
Online Access:https://figshare.com/articles/dataset/Next_Generation_Fire_Severity_Mapping_Image_Service_/25973296
Tags: Add Tag
No Tags, Be the first to tag this record!