Hard Ball Systems and the Lorentz Gas [electronic resource] /

Hard Ball Systems and the Lorentz Gas are fundamental models arising in the theory of Hamiltonian dynamical systems. Moreover, in these models, some key laws of statistical physics can also be tested or even established by mathematically rigorous tools. The mathematical methods are most beautiful but sometimes quite involved. This collection of surveys written by leading researchers of the fields - mathematicians, physicists or mathematical physicists - treat both mathematically rigourous results, and evolving physical theories where the methods are analytic or computational. Some basic topics: hyperbolicity and ergodicity, correlation decay, Lyapunov exponents, Kolmogorov-Sinai entropy, entropy production, irreversibility. This collection is a unique introduction into the subject for graduate students, postdocs or researchers - in both mathematics and physics - who want to start working in the field.

Saved in:
Bibliographic Details
Main Authors: Bunimovich, L. A. author., Burago, D. author., Chernov, N. author., Cohen, E. G. D. author., Dettmann, C. P. author., Dorfman, J. R. author., Ferleger, S. author., Hirschl, R. author., Kononenko, A. author., Lebowitz, J. L. author., Liverani, C. author., Murphy, T. J. author., Piasecki, J. author., Posch, H. A. author., Simányi, N. author., Sinai, Ya. author., Szász, D. author., Tél, T. author., Beijeren, H. van. author., Zon, R. van. author., Vollmer, J. author., Young, L. S. author., Szász, D. editor., SpringerLink (Online service)
Format: Texto biblioteca
Language:eng
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2000
Subjects:Mathematics., Mathematical analysis., Analysis (Mathematics)., Probabilities., Physics., Probability Theory and Stochastic Processes., Theoretical, Mathematical and Computational Physics., Analysis.,
Online Access:http://dx.doi.org/10.1007/978-3-662-04062-1
Tags: Add Tag
No Tags, Be the first to tag this record!