Multivariate analysis applied to reduce the number of predictors in digital soil mapping

The objective of this work was to assess the possibility of generating a smaller set of uncorrelated predictors, potentially applicable to digital soil mapping, by multivariate statistical analysis. The terrain attributes, elevation, slope, stream distance, planar curvature, profile curvature, relative available radiation, natural logarithm of the contributing area, topographic wetness index, and sediment transport capacity, were transformed by the Varimax method into the variables: altimetry, hydrology, and curvature. This transformation represented a variability concentration of 65.57% of the original data in the three new components. The new variables enable the use of a smaller amount of data set in prediction models, besides the fact that they are uncorrelated. Varimax rotation allows the relationship between environment and soil formation to be explicitly included in the prediction models.

Saved in:
Bibliographic Details
Main Authors: Caten, Alexandre ten, Dalmolin, Ricardo Simão Diniz, Pedron, Fabrício Araújo, Mendonça-Santos, Maria de Lourdes
Format: Digital revista
Language:por
Published: Pesquisa Agropecuaria Brasileira 2011
Online Access:https://seer.sct.embrapa.br/index.php/pab/article/view/9731
Tags: Add Tag
No Tags, Be the first to tag this record!
id rev-pab-br-article-9731
record_format ojs
spelling rev-pab-br-article-97312014-05-28T19:11:31Z Multivariate analysis applied to reduce the number of predictors in digital soil mapping Estatística multivariada aplicada à diminuição do número de preditores no mapeamento digital do solo Caten, Alexandre ten Dalmolin, Ricardo Simão Diniz Pedron, Fabrício Araújo Mendonça-Santos, Maria de Lourdes principal components analysis; terrain attributes; pedometry; remote sensing análise de componentes principais; atributos de terreno; pedometria; sensoriamento remoto The objective of this work was to assess the possibility of generating a smaller set of uncorrelated predictors, potentially applicable to digital soil mapping, by multivariate statistical analysis. The terrain attributes, elevation, slope, stream distance, planar curvature, profile curvature, relative available radiation, natural logarithm of the contributing area, topographic wetness index, and sediment transport capacity, were transformed by the Varimax method into the variables: altimetry, hydrology, and curvature. This transformation represented a variability concentration of 65.57% of the original data in the three new components. The new variables enable the use of a smaller amount of data set in prediction models, besides the fact that they are uncorrelated. Varimax rotation allows the relationship between environment and soil formation to be explicitly included in the prediction models. O objetivo deste trabalho foi avaliar a possibildade de se gerar um menor conjunto de preditores não correlacionados e potencialmente aplicáveis ao mapeamento digital de solos, pelo uso da estatística multivariada. Os atributos de terreno, elevação, declividade, distância à drenagem, curvatura planar, curvatura de perfil, radiação relativa disponível, logaritmo natural da área de contribuição, índice de umidade topográfica e capacidade de transporte de sedimento, foram transformados pelo método Varimax nas variáveis: altimetria, hidrologia e curvatura. Essa transformação representou uma concentração de 65,57% da variabilidade dos dados originais nas três novas componentes. As novas variáveis possibilitam o emprego de menor quantidade de dados nos modelos preditivos, além do fato de serem não correlacionados. A rotação Varimax permite que a relação com o ambiente de formação do solo seja explicitamente inserida nos modelos preditivos. Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira CNPQ e CAPES CNPq e CAPES 2011-07-28 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://seer.sct.embrapa.br/index.php/pab/article/view/9731 Pesquisa Agropecuaria Brasileira; v.46, n.5, maio 2011; 554-562 Pesquisa Agropecuária Brasileira; v.46, n.5, maio 2011; 554-562 1678-3921 0100-104x por https://seer.sct.embrapa.br/index.php/pab/article/view/9731/6357 https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/9731/4973
institution EMBRAPA
collection OJS
country Brasil
countrycode BR
component Revista
access En linea
databasecode rev-pab-br
tag revista
region America del Sur
libraryname Sistema de bibliotecas de EMBRAPA
language por
format Digital
author Caten, Alexandre ten
Dalmolin, Ricardo Simão Diniz
Pedron, Fabrício Araújo
Mendonça-Santos, Maria de Lourdes
spellingShingle Caten, Alexandre ten
Dalmolin, Ricardo Simão Diniz
Pedron, Fabrício Araújo
Mendonça-Santos, Maria de Lourdes
Multivariate analysis applied to reduce the number of predictors in digital soil mapping
author_facet Caten, Alexandre ten
Dalmolin, Ricardo Simão Diniz
Pedron, Fabrício Araújo
Mendonça-Santos, Maria de Lourdes
author_sort Caten, Alexandre ten
title Multivariate analysis applied to reduce the number of predictors in digital soil mapping
title_short Multivariate analysis applied to reduce the number of predictors in digital soil mapping
title_full Multivariate analysis applied to reduce the number of predictors in digital soil mapping
title_fullStr Multivariate analysis applied to reduce the number of predictors in digital soil mapping
title_full_unstemmed Multivariate analysis applied to reduce the number of predictors in digital soil mapping
title_sort multivariate analysis applied to reduce the number of predictors in digital soil mapping
description The objective of this work was to assess the possibility of generating a smaller set of uncorrelated predictors, potentially applicable to digital soil mapping, by multivariate statistical analysis. The terrain attributes, elevation, slope, stream distance, planar curvature, profile curvature, relative available radiation, natural logarithm of the contributing area, topographic wetness index, and sediment transport capacity, were transformed by the Varimax method into the variables: altimetry, hydrology, and curvature. This transformation represented a variability concentration of 65.57% of the original data in the three new components. The new variables enable the use of a smaller amount of data set in prediction models, besides the fact that they are uncorrelated. Varimax rotation allows the relationship between environment and soil formation to be explicitly included in the prediction models.
publisher Pesquisa Agropecuaria Brasileira
publishDate 2011
url https://seer.sct.embrapa.br/index.php/pab/article/view/9731
work_keys_str_mv AT catenalexandreten multivariateanalysisappliedtoreducethenumberofpredictorsindigitalsoilmapping
AT dalmolinricardosimaodiniz multivariateanalysisappliedtoreducethenumberofpredictorsindigitalsoilmapping
AT pedronfabricioaraujo multivariateanalysisappliedtoreducethenumberofpredictorsindigitalsoilmapping
AT mendoncasantosmariadelourdes multivariateanalysisappliedtoreducethenumberofpredictorsindigitalsoilmapping
AT catenalexandreten estatisticamultivariadaaplicadaadiminuicaodonumerodepreditoresnomapeamentodigitaldosolo
AT dalmolinricardosimaodiniz estatisticamultivariadaaplicadaadiminuicaodonumerodepreditoresnomapeamentodigitaldosolo
AT pedronfabricioaraujo estatisticamultivariadaaplicadaadiminuicaodonumerodepreditoresnomapeamentodigitaldosolo
AT mendoncasantosmariadelourdes estatisticamultivariadaaplicadaadiminuicaodonumerodepreditoresnomapeamentodigitaldosolo
_version_ 1813448908347539456