Selection of low impact concrete mixtures based on life-cycle assessment mixtures
Abstract Over the past decades, extensive research has been carried out to reduce the environmental impacts associated with the cement and concrete production. Life-cycle assessment (LCA) enables the quantification of the environmental loads and offers a useful perspective to scientifically support such studies. In this paper, we demonstrate LCA’s contribution to the selection of low environmental impact concretes, using breakwater coreloc components as a case study. A detailed experimental study was designed for the selection of an alkali activator for blast furnace slag (bfs) to produce concrete suitable for breakwater structures; for the evaluation of concrete properties and for the performance assessment of full scale elements in the field, as well as in the laboratory. Sodium silicate-activated bfs concrete mixtures achieved the best results in terms of performance requirements. Our cradle-to-gate life-cycle assessments showed that, though this chemical activator indeed produces lower global warming potential mixtures than the reference portland CP V-ARI concrete, it induces relevant impacts in several environmental categories. Such information is critical when selecting and optimizing low-impact concrete mixture design, and would not be detected in typical experimental studies that are exclusively guided by compliance with performance requirements.
Main Authors: | , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
IBRACON - Instituto Brasileiro do Concreto
2018
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952018000601354 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:scielo:S1983-41952018000601354 |
---|---|
record_format |
ojs |
spelling |
oai:scielo:S1983-419520180006013542018-12-10Selection of low impact concrete mixtures based on life-cycle assessment mixturesSILVA,M. G.GOMES,V.SAADE,M. R. M. life cycle assessment breakwaters alkali activated binders blast furnace slag Abstract Over the past decades, extensive research has been carried out to reduce the environmental impacts associated with the cement and concrete production. Life-cycle assessment (LCA) enables the quantification of the environmental loads and offers a useful perspective to scientifically support such studies. In this paper, we demonstrate LCA’s contribution to the selection of low environmental impact concretes, using breakwater coreloc components as a case study. A detailed experimental study was designed for the selection of an alkali activator for blast furnace slag (bfs) to produce concrete suitable for breakwater structures; for the evaluation of concrete properties and for the performance assessment of full scale elements in the field, as well as in the laboratory. Sodium silicate-activated bfs concrete mixtures achieved the best results in terms of performance requirements. Our cradle-to-gate life-cycle assessments showed that, though this chemical activator indeed produces lower global warming potential mixtures than the reference portland CP V-ARI concrete, it induces relevant impacts in several environmental categories. Such information is critical when selecting and optimizing low-impact concrete mixture design, and would not be detected in typical experimental studies that are exclusively guided by compliance with performance requirements.info:eu-repo/semantics/openAccessIBRACON - Instituto Brasileiro do ConcretoRevista IBRACON de Estruturas e Materiais v.11 n.6 20182018-12-01info:eu-repo/semantics/articletext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952018000601354en10.1590/s1983-41952018000600010 |
institution |
SCIELO |
collection |
OJS |
country |
Brasil |
countrycode |
BR |
component |
Revista |
access |
En linea |
databasecode |
rev-scielo-br |
tag |
revista |
region |
America del Sur |
libraryname |
SciELO |
language |
English |
format |
Digital |
author |
SILVA,M. G. GOMES,V. SAADE,M. R. M. |
spellingShingle |
SILVA,M. G. GOMES,V. SAADE,M. R. M. Selection of low impact concrete mixtures based on life-cycle assessment mixtures |
author_facet |
SILVA,M. G. GOMES,V. SAADE,M. R. M. |
author_sort |
SILVA,M. G. |
title |
Selection of low impact concrete mixtures based on life-cycle assessment mixtures |
title_short |
Selection of low impact concrete mixtures based on life-cycle assessment mixtures |
title_full |
Selection of low impact concrete mixtures based on life-cycle assessment mixtures |
title_fullStr |
Selection of low impact concrete mixtures based on life-cycle assessment mixtures |
title_full_unstemmed |
Selection of low impact concrete mixtures based on life-cycle assessment mixtures |
title_sort |
selection of low impact concrete mixtures based on life-cycle assessment mixtures |
description |
Abstract Over the past decades, extensive research has been carried out to reduce the environmental impacts associated with the cement and concrete production. Life-cycle assessment (LCA) enables the quantification of the environmental loads and offers a useful perspective to scientifically support such studies. In this paper, we demonstrate LCA’s contribution to the selection of low environmental impact concretes, using breakwater coreloc components as a case study. A detailed experimental study was designed for the selection of an alkali activator for blast furnace slag (bfs) to produce concrete suitable for breakwater structures; for the evaluation of concrete properties and for the performance assessment of full scale elements in the field, as well as in the laboratory. Sodium silicate-activated bfs concrete mixtures achieved the best results in terms of performance requirements. Our cradle-to-gate life-cycle assessments showed that, though this chemical activator indeed produces lower global warming potential mixtures than the reference portland CP V-ARI concrete, it induces relevant impacts in several environmental categories. Such information is critical when selecting and optimizing low-impact concrete mixture design, and would not be detected in typical experimental studies that are exclusively guided by compliance with performance requirements. |
publisher |
IBRACON - Instituto Brasileiro do Concreto |
publishDate |
2018 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952018000601354 |
work_keys_str_mv |
AT silvamg selectionoflowimpactconcretemixturesbasedonlifecycleassessmentmixtures AT gomesv selectionoflowimpactconcretemixturesbasedonlifecycleassessmentmixtures AT saademrm selectionoflowimpactconcretemixturesbasedonlifecycleassessmentmixtures |
_version_ |
1756436491940134912 |