Effects of light on the growth and photosynthesis of Egeria najas planchon

Photosynthesis and growth of Egeria najas (Hydrocharitaceae) from a subtropical reservoir (Itaipu Reservoir, Brazil-Paraguay) were measured in response to low light intensities (0-124 µM m-2 s-1 PAR) in the laboratory. Photosynthesis approached saturation in the range of light intensities used and light compensation point was reached at ca. 6-22 µM m-2 s-1 PAR, indicating that this species had a low light requirement for growth. Light stimulated shoot and root relative growth rates (RGR) but it was not related to ratios between root:shoot RGR. Laboratory observations indicated that (i) both shoot and root growth were simultaneously stimulated by light and (ii) the low light requirements of E. najas may explain its incidence in the Itaipu Reservoir, where biogenic as well as abiogenic turbidity is high.

Saved in:
Bibliographic Details
Main Authors: Tavechio,Washington Luiz Gomes, Thomaz,Sidinei Magela
Format: Digital revista
Language:English
Published: Instituto de Tecnologia do Paraná - Tecpar 2003
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132003000200011
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Photosynthesis and growth of Egeria najas (Hydrocharitaceae) from a subtropical reservoir (Itaipu Reservoir, Brazil-Paraguay) were measured in response to low light intensities (0-124 µM m-2 s-1 PAR) in the laboratory. Photosynthesis approached saturation in the range of light intensities used and light compensation point was reached at ca. 6-22 µM m-2 s-1 PAR, indicating that this species had a low light requirement for growth. Light stimulated shoot and root relative growth rates (RGR) but it was not related to ratios between root:shoot RGR. Laboratory observations indicated that (i) both shoot and root growth were simultaneously stimulated by light and (ii) the low light requirements of E. najas may explain its incidence in the Itaipu Reservoir, where biogenic as well as abiogenic turbidity is high.