Quasi bi-slant submersions in contact geometry

ABSTRACT The aim of the paper is to introduce the concept of quasi bi-slant submersions from almost contact metric manifolds onto Riemannian manifolds as a generalization of semi-slant and hemi-slant submersions. We mainly focus on quasi bi-slant submersions from cosymplectic manifolds. We give some non-trivial examples and study the geometry of leaves of distributions which are involved in the definition of the sub-mersion. Moreover, we find some conditions for such sub-mersions to be integrable and totally geodesic.

Saved in:
Bibliographic Details
Main Authors: Prasad,Rajendra, Akyol,Mehmet Akif, Kumar,Sushil, Singh,Punit Kumar
Format: Digital revista
Language:English
Published: Universidad de La Frontera. Departamento de Matemática y Estadística. 2022
Online Access:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462022000100001
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:scielo:S0719-06462022000100001
record_format ojs
spelling oai:scielo:S0719-064620220001000012022-05-13Quasi bi-slant submersions in contact geometryPrasad,RajendraAkyol,Mehmet AkifKumar,SushilSingh,Punit Kumar Riemannian submersion semi-invariant submersion, bi-slant submersion quasi bi-slant submersion horizontal distribution ABSTRACT The aim of the paper is to introduce the concept of quasi bi-slant submersions from almost contact metric manifolds onto Riemannian manifolds as a generalization of semi-slant and hemi-slant submersions. We mainly focus on quasi bi-slant submersions from cosymplectic manifolds. We give some non-trivial examples and study the geometry of leaves of distributions which are involved in the definition of the sub-mersion. Moreover, we find some conditions for such sub-mersions to be integrable and totally geodesic.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.24 n.1 20222022-04-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462022000100001en10.4067/S0719-06462022000100001
institution SCIELO
collection OJS
country Chile
countrycode CL
component Revista
access En linea
databasecode rev-scielo-cl
tag revista
region America del Sur
libraryname SciELO
language English
format Digital
author Prasad,Rajendra
Akyol,Mehmet Akif
Kumar,Sushil
Singh,Punit Kumar
spellingShingle Prasad,Rajendra
Akyol,Mehmet Akif
Kumar,Sushil
Singh,Punit Kumar
Quasi bi-slant submersions in contact geometry
author_facet Prasad,Rajendra
Akyol,Mehmet Akif
Kumar,Sushil
Singh,Punit Kumar
author_sort Prasad,Rajendra
title Quasi bi-slant submersions in contact geometry
title_short Quasi bi-slant submersions in contact geometry
title_full Quasi bi-slant submersions in contact geometry
title_fullStr Quasi bi-slant submersions in contact geometry
title_full_unstemmed Quasi bi-slant submersions in contact geometry
title_sort quasi bi-slant submersions in contact geometry
description ABSTRACT The aim of the paper is to introduce the concept of quasi bi-slant submersions from almost contact metric manifolds onto Riemannian manifolds as a generalization of semi-slant and hemi-slant submersions. We mainly focus on quasi bi-slant submersions from cosymplectic manifolds. We give some non-trivial examples and study the geometry of leaves of distributions which are involved in the definition of the sub-mersion. Moreover, we find some conditions for such sub-mersions to be integrable and totally geodesic.
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2022
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462022000100001
work_keys_str_mv AT prasadrajendra quasibislantsubmersionsincontactgeometry
AT akyolmehmetakif quasibislantsubmersionsincontactgeometry
AT kumarsushil quasibislantsubmersionsincontactgeometry
AT singhpunitkumar quasibislantsubmersionsincontactgeometry
_version_ 1755998684147875840