Quasi bi-slant submersions in contact geometry
ABSTRACT The aim of the paper is to introduce the concept of quasi bi-slant submersions from almost contact metric manifolds onto Riemannian manifolds as a generalization of semi-slant and hemi-slant submersions. We mainly focus on quasi bi-slant submersions from cosymplectic manifolds. We give some non-trivial examples and study the geometry of leaves of distributions which are involved in the definition of the sub-mersion. Moreover, we find some conditions for such sub-mersions to be integrable and totally geodesic.
Saved in:
Main Authors: | , , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2022
|
Online Access: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462022000100001 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:scielo:S0719-06462022000100001 |
---|---|
record_format |
ojs |
spelling |
oai:scielo:S0719-064620220001000012022-05-13Quasi bi-slant submersions in contact geometryPrasad,RajendraAkyol,Mehmet AkifKumar,SushilSingh,Punit Kumar Riemannian submersion semi-invariant submersion, bi-slant submersion quasi bi-slant submersion horizontal distribution ABSTRACT The aim of the paper is to introduce the concept of quasi bi-slant submersions from almost contact metric manifolds onto Riemannian manifolds as a generalization of semi-slant and hemi-slant submersions. We mainly focus on quasi bi-slant submersions from cosymplectic manifolds. We give some non-trivial examples and study the geometry of leaves of distributions which are involved in the definition of the sub-mersion. Moreover, we find some conditions for such sub-mersions to be integrable and totally geodesic.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.24 n.1 20222022-04-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462022000100001en10.4067/S0719-06462022000100001 |
institution |
SCIELO |
collection |
OJS |
country |
Chile |
countrycode |
CL |
component |
Revista |
access |
En linea |
databasecode |
rev-scielo-cl |
tag |
revista |
region |
America del Sur |
libraryname |
SciELO |
language |
English |
format |
Digital |
author |
Prasad,Rajendra Akyol,Mehmet Akif Kumar,Sushil Singh,Punit Kumar |
spellingShingle |
Prasad,Rajendra Akyol,Mehmet Akif Kumar,Sushil Singh,Punit Kumar Quasi bi-slant submersions in contact geometry |
author_facet |
Prasad,Rajendra Akyol,Mehmet Akif Kumar,Sushil Singh,Punit Kumar |
author_sort |
Prasad,Rajendra |
title |
Quasi bi-slant submersions in contact geometry |
title_short |
Quasi bi-slant submersions in contact geometry |
title_full |
Quasi bi-slant submersions in contact geometry |
title_fullStr |
Quasi bi-slant submersions in contact geometry |
title_full_unstemmed |
Quasi bi-slant submersions in contact geometry |
title_sort |
quasi bi-slant submersions in contact geometry |
description |
ABSTRACT The aim of the paper is to introduce the concept of quasi bi-slant submersions from almost contact metric manifolds onto Riemannian manifolds as a generalization of semi-slant and hemi-slant submersions. We mainly focus on quasi bi-slant submersions from cosymplectic manifolds. We give some non-trivial examples and study the geometry of leaves of distributions which are involved in the definition of the sub-mersion. Moreover, we find some conditions for such sub-mersions to be integrable and totally geodesic. |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2022 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462022000100001 |
work_keys_str_mv |
AT prasadrajendra quasibislantsubmersionsincontactgeometry AT akyolmehmetakif quasibislantsubmersionsincontactgeometry AT kumarsushil quasibislantsubmersionsincontactgeometry AT singhpunitkumar quasibislantsubmersionsincontactgeometry |
_version_ |
1755998684147875840 |