Effect of a multispecies fungal additive on rumen fermentation profile, degradability and kinetic gas production

Two experiments evaluated the effect of a multispecies fungal complex (BP, BIOPREMIX MX®, Ruminal Fermentation Tech, Uruguay). In Experiment 1 (E1), the impact of adding BP to a total mixed ration (TMR) on ruminal fermentation profile and TMR in situ degradation kinetics was assessed. In Experiment 2 (E2), the effect of adding BP to various substrates on in vitro fermentability was examined. In E1, 4 Holstein cows with rumen cannulas were randomly assigned to Control (TMR with forage:concentrate ratio 75:25) or Control + 120 g/cow/d of BP (BP) and received ad libitum TMR for 30 days. Samples of TMR were ruminally incubated to estimate in situ degradation kinetic. Ruminal pH, ammonia, and volatile fatty acids (VFA) concentrations were measured just before feeding, 4 h and 8 h post feeding. In E2, a factorial arrangement included two BP levels (0 -Control or 6.5 g BP per kg dry matter incubated-WBP) and 8 substrates. In vitro gas production kinetics (GPk), dry matter digestibility (IVDMD), methanogenic potential (CH4), partitioning factor (PF), VFA, and microbial crude protein (MCP) were estimated. The BP increased proportion of propionate (P ≤ 0.05) and reduced ketogenic:glucogenic ratio and Lag phase of NDF (P ≤ 0.05). WBP tended to increase IVDMD, and substrate affected GPk, IVDMD, CH4, PF, VFA and MCP (P ≤ 0.01). Overall, BP improved ruminal metabolism favoring a more glucogenic profile, a shortening Lag phase in NDF degradation, and increasing IVDMD.

Saved in:
Bibliographic Details
Main Authors: Bruni, María de los Ángeles, Chilibroste, Pablo, Casal, Alberto, Trujillo, Ana Inés
Format: Digital revista
Language:eng
Published: Coeditada entre Facultad de Agronomía - Udelar y el Instituto Nacional de Investigación Agropecuaria (INIA) 2024
Online Access:https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1214
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:oai.agrocienciauruguay.uy:article-1214
record_format ojs
institution UDELAR
collection OJS
country Uruguay
countrycode UY
component Revista
access En linea
databasecode rev-agrociencia-uy
tag revista
region America del Sur
libraryname Biblioteca de la Facultad de Agronomía de la UDELAR de UY
language eng
format Digital
author Bruni, María de los Ángeles
Chilibroste, Pablo
Casal, Alberto
Trujillo, Ana Inés
spellingShingle Bruni, María de los Ángeles
Chilibroste, Pablo
Casal, Alberto
Trujillo, Ana Inés
Effect of a multispecies fungal additive on rumen fermentation profile, degradability and kinetic gas production
author_facet Bruni, María de los Ángeles
Chilibroste, Pablo
Casal, Alberto
Trujillo, Ana Inés
author_sort Bruni, María de los Ángeles
title Effect of a multispecies fungal additive on rumen fermentation profile, degradability and kinetic gas production
title_short Effect of a multispecies fungal additive on rumen fermentation profile, degradability and kinetic gas production
title_full Effect of a multispecies fungal additive on rumen fermentation profile, degradability and kinetic gas production
title_fullStr Effect of a multispecies fungal additive on rumen fermentation profile, degradability and kinetic gas production
title_full_unstemmed Effect of a multispecies fungal additive on rumen fermentation profile, degradability and kinetic gas production
title_sort effect of a multispecies fungal additive on rumen fermentation profile, degradability and kinetic gas production
description Two experiments evaluated the effect of a multispecies fungal complex (BP, BIOPREMIX MX®, Ruminal Fermentation Tech, Uruguay). In Experiment 1 (E1), the impact of adding BP to a total mixed ration (TMR) on ruminal fermentation profile and TMR in situ degradation kinetics was assessed. In Experiment 2 (E2), the effect of adding BP to various substrates on in vitro fermentability was examined. In E1, 4 Holstein cows with rumen cannulas were randomly assigned to Control (TMR with forage:concentrate ratio 75:25) or Control + 120 g/cow/d of BP (BP) and received ad libitum TMR for 30 days. Samples of TMR were ruminally incubated to estimate in situ degradation kinetic. Ruminal pH, ammonia, and volatile fatty acids (VFA) concentrations were measured just before feeding, 4 h and 8 h post feeding. In E2, a factorial arrangement included two BP levels (0 -Control or 6.5 g BP per kg dry matter incubated-WBP) and 8 substrates. In vitro gas production kinetics (GPk), dry matter digestibility (IVDMD), methanogenic potential (CH4), partitioning factor (PF), VFA, and microbial crude protein (MCP) were estimated. The BP increased proportion of propionate (P ≤ 0.05) and reduced ketogenic:glucogenic ratio and Lag phase of NDF (P ≤ 0.05). WBP tended to increase IVDMD, and substrate affected GPk, IVDMD, CH4, PF, VFA and MCP (P ≤ 0.01). Overall, BP improved ruminal metabolism favoring a more glucogenic profile, a shortening Lag phase in NDF degradation, and increasing IVDMD.
publisher Coeditada entre Facultad de Agronomía - Udelar y el Instituto Nacional de Investigación Agropecuaria (INIA)
publishDate 2024
url https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1214
work_keys_str_mv AT brunimariadelosangeles effectofamultispeciesfungaladditiveonrumenfermentationprofiledegradabilityandkineticgasproduction
AT chilibrostepablo effectofamultispeciesfungaladditiveonrumenfermentationprofiledegradabilityandkineticgasproduction
AT casalalberto effectofamultispeciesfungaladditiveonrumenfermentationprofiledegradabilityandkineticgasproduction
AT trujilloanaines effectofamultispeciesfungaladditiveonrumenfermentationprofiledegradabilityandkineticgasproduction
AT brunimariadelosangeles efectodeunaditivofungicomultiespeciesobreperfildefermentacionruminaldegradabilidadycineticadeproducciondegas
AT chilibrostepablo efectodeunaditivofungicomultiespeciesobreperfildefermentacionruminaldegradabilidadycineticadeproducciondegas
AT casalalberto efectodeunaditivofungicomultiespeciesobreperfildefermentacionruminaldegradabilidadycineticadeproducciondegas
AT trujilloanaines efectodeunaditivofungicomultiespeciesobreperfildefermentacionruminaldegradabilidadycineticadeproducciondegas
AT brunimariadelosangeles efeitodeumaditivofungicomultiespecienoperfildefermentacaoruminaldegradabilidadeecineticadeproducaodegases
AT chilibrostepablo efeitodeumaditivofungicomultiespecienoperfildefermentacaoruminaldegradabilidadeecineticadeproducaodegases
AT casalalberto efeitodeumaditivofungicomultiespecienoperfildefermentacaoruminaldegradabilidadeecineticadeproducaodegases
AT trujilloanaines efeitodeumaditivofungicomultiespecienoperfildefermentacaoruminaldegradabilidadeecineticadeproducaodegases
_version_ 1813452778855464960
spelling oai:oai.agrocienciauruguay.uy:article-12142024-09-18T11:49:28Z Effect of a multispecies fungal additive on rumen fermentation profile, degradability and kinetic gas production Efecto de un aditivo fúngico multiespecie sobre perfil de fermentación ruminal, degradabilidad y cinética de producción de gas Efeito de um aditivo fúngico multiespécie no perfil de fermentação ruminal, de-gradabilidade e cinética de produção de gases Bruni, María de los Ángeles Chilibroste, Pablo Casal, Alberto Trujillo, Ana Inés multifungal additive in situ kinetic in vitro fermentability aditivo multifúngico cinética in situ fermentabilidad in vitro aditivo multifúngico cinética in situ fermentabilidade in vitro Two experiments evaluated the effect of a multispecies fungal complex (BP, BIOPREMIX MX®, Ruminal Fermentation Tech, Uruguay). In Experiment 1 (E1), the impact of adding BP to a total mixed ration (TMR) on ruminal fermentation profile and TMR in situ degradation kinetics was assessed. In Experiment 2 (E2), the effect of adding BP to various substrates on in vitro fermentability was examined. In E1, 4 Holstein cows with rumen cannulas were randomly assigned to Control (TMR with forage:concentrate ratio 75:25) or Control + 120 g/cow/d of BP (BP) and received ad libitum TMR for 30 days. Samples of TMR were ruminally incubated to estimate in situ degradation kinetic. Ruminal pH, ammonia, and volatile fatty acids (VFA) concentrations were measured just before feeding, 4 h and 8 h post feeding. In E2, a factorial arrangement included two BP levels (0 -Control or 6.5 g BP per kg dry matter incubated-WBP) and 8 substrates. In vitro gas production kinetics (GPk), dry matter digestibility (IVDMD), methanogenic potential (CH4), partitioning factor (PF), VFA, and microbial crude protein (MCP) were estimated. The BP increased proportion of propionate (P ≤ 0.05) and reduced ketogenic:glucogenic ratio and Lag phase of NDF (P ≤ 0.05). WBP tended to increase IVDMD, and substrate affected GPk, IVDMD, CH4, PF, VFA and MCP (P ≤ 0.01). Overall, BP improved ruminal metabolism favoring a more glucogenic profile, a shortening Lag phase in NDF degradation, and increasing IVDMD. Dos experimentos evaluaron el efecto de un complejo fúngico multiespecies (BP, BIOPREMIX MX®, Ruminal Fermentation Tech, Uruguay). En el Experimento 1 (E1) se evaluó el impacto de agregar BP a una ración totalmente mezclada (TMR) sobre la fermentación ruminal y la cinética de degradación de la TMR. En el Experimento 2 (E2) se evaluó el efecto de agregar BP a varios sustratos sobre la fermentabilidad in vitro. En E1, 4 vacas Holstein con cánulas ruminales fueron asignadas aleatoriamente a Control (TMR con relación forraje:concentrado 75:25) o Control + 120 g/vaca/d de BP (BP), y recibieron TMR ad libitum durante 30 días. Se incubaron ruminalmente muestras de TMR para estimar la cinética de degradación in situ. Se midió pH, concentración de amoníaco y de ácidos grasos volátiles (VFA) en líquido ruminal antes de la alimentación, 4 y 8 h después de la misma. En E2, un arreglo factorial incluyó dos niveles de BP (0 -Control o 6.5 g BP por kg de materia seca incubada -WBP) y 8 sustratos. Se estimaron la cinética de producción de gas in vitro (GPk), la digestibilidad de la materia seca (IVDMD), el potencial metanogénico (CH4), el factor de partición (PF), VFA y la proteína microbiana (MCP). El BP aumentó la proporción de propionato (P ≤ 0,05) y redujo la relación cetogénica:glucogénica y la fase Lag de la FDN (P ≤ 0,05). WBP tendió a aumentar la IVDMD, y el sustrato afectó a GPk, IVDMD, CH4, PF, VFA y MCP (P ≤ 0,01). En general, BP mejoró el metabolismo ruminal favoreciendo un perfil más glucogénico, una fase Lag más corta en la degradación de FDN y un aumento de la IVDMD. Dois experimentos avaliaramo efeito de um complexo fúngico multiespécie (BP, BIOPREMIX MX®, Ruminal Fermentation Tech, Uruguai). No Experimento 1 (E1) avaliou o efeito da adição de BP a uma ração mista total (TMR) no perfil de fermentação ruminal e na cinética de degradação in situ da TMR. No Experimento 2 (E2) avaliou o efeito da adição de BP a diferentes substratos na fermentabilidade in vitro. No E1, 4 vacas Holstein com cânulas ruminais foram aleatoriamente designadas para Controle (TMR com relação volumoso:concentrado 75:25) ou Controle + 120 g/vaca/d de BP (BP) e receberam TMR ad libitum por 30 dias. As mostras de TMR foram incubadas no rúmen para estimar a cinética de degradação in situ. O pH e concentrações de amônia e ácidos graxos voláteis (VFA) foram medidas no líquido ruminal imediatamente antes da alimentação, 4 horas e 8 horas após a alimentação. Em E2, um arranjo fatorial de níveis de BP (6,5 g BP/ kg MS incubado –WBP ou sem BP -Control) e 8 substratos. Foram estimadas a cinética de produção de gases in vitro (GPk), a digestibilidade da matéria seca (IVDMD), o potencial metanogênico (CH4), o fator de partição (FP), os AGV e a proteína microbiana (MCP). O BP aumentou a proporção de propionato (P ≤ 0,05) e reduziu a relação cetogênico:glicogênico e a fase Lag da FDN (P ≤ 0,05). O WBP tendeuaaumentara IVDMD e o substrato afetou, IVDMD, CH4, PF, VFA total e MCP (P ≤ 0,01). No geral, BP melhorou o metabolismo ruminal favorecendo um perfil mais glicogênico, um encurtamento da fase Lag na degradação da FDN e um aumento na IVDMD. Coeditada entre Facultad de Agronomía - Udelar y el Instituto Nacional de Investigación Agropecuaria (INIA) 2024-05-23 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1214 10.31285/AGRO.28.1214 Agrociencia Uruguay; Vol. 28 No. NE1 (2024); e1214 Agrociencia Uruguay; Vol. 28 Núm. NE1 (2024); e1214 Agrociencia Uruguay; v. 28 n. NE1 (2024); e1214 2730-5066 eng https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1214/1730 /*ref*/Adesogan AT. Using dietary additives to manipulate rumen fermentation and improve nutrient utilization and animal performance. In: 20th Florida Ruminant Nutrition Symposium [Internet]. Gainesville: University of Florida; 2009 [cited 2024 Feb 26]. p. 13-38. Available from: https://animal.ifas.ufl.edu/apps/dairymedia/rns/2009/Adesogan.pdf /*ref*/Adesogan AT, Ma ZX, Romero JJ, Arriola KG. Improving cell wall digestion and animal performance with fibrolytic enzymes. J Anim Sci. 2014;92:1317-30. Doi: 10.2527/jas.2013-7273. /*ref*/Al-Masri MR. An in vitro evaluation of some unconventional ruminant feeds in terms of the organic matter digestibility, energy and microbial biomass. Trop Anim Health Prod. 2003;35:155-67. Doi: 10.1023/a:1022877603010. /*ref*/Arriola KG, Kim SC, Staples CR, Adesogan AT. Effect of fibrolytic enzyme application to low- and high-concentrate diets on the performance of lactating dairy cattle. J Dairy Sci. 2011; 94:832-41. Doi: 10.3168/jds.2010-3424. /*ref*/Arriola KG, Oliveira AS, Ma ZX, Lean J, Giurcanu MC, Adesogan AT. A meta-analysis on the effect of dietary application of exogenous fibrolytic enzymes on the performance of dairy cows. J Dairy Sci. 2017;100(6):4513–27.doi: 10.3168/jds.2016- 12103. /*ref*/Association of Official Analytical Chemist. Official methods of analysis of the Association of Official Analytical Chemists. 15th ed. Arlington: AOAC; 1990. 3v. /*ref*/Attaelmannan MA, Dahl AA, Reid RS. Analysis of volatile fatty acids in rumen fluid by proton NMR spectroscopy. Can J Anim Sci. 1999;79(3):401-4. /*ref*/Aydin G, Grant RJ, O'rear J. Brown Midrib Sorghum in diets for lactating dairy cows. J Dairy Sci. 1999;82:2127-35. Doi: 10.3168/jds.S0022-0302(99)75456-1. /*ref*/Beauchemin KA, Colombatto D, Morgavi DP. A rationale for the development of feed enzyme products for ruminants. Can J Anim Sci. 2004;84:23-36. Doi: 10.4141/A02-103. /*ref*/Beauchemin KA, Yang WZ, Rode LM. Effects of grain source and enzyme additive on site and extent of nutrient digestion in dairy cows. J Dairy Sci. 1999;82:378-90. Doi: 10.3168/jds.S0022-0302(99)75244-6. /*ref*/Benaddou M, Hajjaj H, Diouri M. Eco-Friendly Utilization of Coproducts- Enhancing Ruminant Feed Digestibility through Synergistic Fungal Co-inoculation with Fusarium solani, Fusarium oxysporum and Penicillium chrysogenum. Ecol Eng Environ Technol. 2023;24:120-32. Doi: 10.12912/27197050/171590. /*ref*/Blummel M, Steingss H, Becker K. The relationship between in vitro gas production, in vitro microbial biomass yield, and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. Brit J Nutr. 1997;77:911-21. Doi: 10.1079/bjn19970089. /*ref*/Chaney AL, Marbach EP. Modified reagents for determination of urea and ammonia. Clin Chem. 1962;8(2):130-2. /*ref*/Edmonson AJ, Lean IJ, Weaver LD, Farver T, Webster G. A body condition scoring chart for Holstein dairy cows. J Dairy Sci. 1989;72:68-78. Doi: 10.3168/jds.S0022-0302(89)79081-0. /*ref*/Elghandour MY, Vázquez JC, Salem AZM, Kholif AE, Martínez JS, Camacho LM, Cerrillo-Soto MA. Effects of saccharomyces cerevisiae at direct addition or pre-incubation on in vitro gas production kinetics and degradability of four fibrous feeds. Ital J Anim Sci. 2014;13(2):295-301. Doi: 10.4081/ijas.2014.3075. /*ref*/FAO. FAOSTAT [Internet]. Rome: FAO; [cited 2024 Feb 26]. Available from: http://www.fao.org/faostat/es/#data/FBS /*ref*/France J, Dijkstra J, Dhanoa MS, Lopez S, Bannink A. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical considerations. Brit J Nutr. 2000;83:143-50. Doi: 10.1017/s0007114500000180. /*ref*/Freiria L, Zervoudakis J, Paula N, Cabral L, Tedeschi L, Silva P, Melo A, Possamai A. Exogenous enzyme on in vitro gas production and ruminal fermentation of diet containing high level of concentrate. Rev Bras Saúde Prod Anim. 2018;19:287-300. Doi: 10.1590/S1519-99402018000300006. /*ref*/Gado HM, Salem AZM, Robinson PH, Hassan M. Influence of exogenous enzymes on nutrient digestibility, extent of ruminal fermentation as well as milk production and composition in dairy cows. Anim Feed Sci Tech. 2009;154:36-46. Doi: 10.1016/j.anifeedsci.2009.07.006. /*ref*/Gandra JR, Miranda GA, Goes RH, Takiya CS, Del Valle TA, Oliveira ER, Freitas JJ, Gandra ER, Arakia HM, Santos AL. Fibrolytic enzyme supplementation through ruminal bolus na eating silage or sugarcane silage- based diets. Anim Feed Sci Technol. 2017;231:29-37. Doi: 10.1016/j. anifeedsci.2017.06.009. /*ref*/Getachew G, Blummel M, Makkar HPS, Becher K. In vitro gas measuring technique for assessment of nutritional quality of feeds: a review. Anim Feed Sci Technol. 1998;72:261-81. Doi: 10.1016/S0377-8401(97)00189-2. /*ref*/Getachew G, Makkar HPS, Becker K. Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. J Agri Sci. 2002;139:341-52. Doi: 10.1017S0021859602002393. /*ref*/Getachew G, Robinson PH, De Peters EJ, Taylor SJ. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminants feed. Anim Feed SciTechnol. 2004;111:57-71. Doi: 10.1016/S0377-8401(03)00217-7. /*ref*/Goering HK, Van Soest PJ. Forage fiber analysis (apparatus reagents, procedures, and some applications). Washington: USDA; 1970. 20p. /*ref*/Martins LF, Oh J, Harper M, Melgar A, Räisänen SE, Chen X, Nedelkov K, Karnezos TP, Hristov AN. Effects of an exogenous enzyme preparation extracted from a mixed culture of Aspergillus spp. on lactational performance, metabolism, and digestibility in primiparous and multiparous cows. J Dairy Sci. 2022;105:7344-53. Doi: 10.3168/jds.2022-21990. /*ref*/Mattiauda DA, Tamminga S, Gibb MJ, Soca P, Bentancur O, Chilibroste P. Restricting access time at pasture and time of grazing allocation for Holstein dairy cows: Ingestive behaviour, dry matter intake and milk production. Livest Sci. 2013;152:53-62. Doi: 10.1016/j.livsci.2012.12.010. /*ref*/McAllister TA, Bae HD, Jones GA, Cheng LJ. Microbial attachment and feed digestion in the rumen. J Dairy Sci. 1994;72:3004-18. Doi: 10.2527/1194.72113004x. /*ref*/Meale SJ, Beauchemin KA, Hristov AN, Chaves AV, McAllister TA. Opportunities and challenges in using exogenous enzymes to improve ruminant production. J Animal Sci. 2014;92(2):427-42. Doi: 10.2527/jas.2013-6869. /*ref*/National Research Council. Nutrient Requirements of Dairy Cattle. 7th ed. Washington: National Academy of Sciences; 2001. 381p. /*ref*/Orskov ER, Hovell FD, Mould F. The use of the nylon bag technique for the evaluation of feedstuffs. Tropical Animal Production. 1980;5:195-213. /*ref*/Restle J, Neumann M, Brondadi IL, Alves Filho DC, Carvalho RA, Ziegler M, Pereira JR. Manipulação do corte do sorgo (Sorghum bicolor (L.) Moench) para confecção de silagem, visando a produção do novilho superprecoce. R Bras Zootec. 2002;31:1481-90. Doi: 10.1590/S1516-35982002000600020. /*ref*/Romero JJ, Ma ZX, Gonzalez CF, Adesogan AT. Effect of adding cofactors to exogenous fibrolytic enzymes on pre- ingestive hydrolysis, in vitro digestibility and fermentation of bermudagrass haylage. J Dairy Sci. 2015;98:4659-72. Doi: 10.3168/jds.2014-8849. /*ref*/Romero JJ, Macias EG, Ma ZX, Martins RM, Staples CR, Beauchemin KA, Adesogan AT. Improving the performance of dairy cattle with a xylanase-rich exogenous enzyme preparation. J Dairy Sci. 2016;99:3486-96. Doi: 10.3168/jds.2015-10082. /*ref*/Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol. 1994;48:185-97. Doi: 10.1016/0377-840(94)90171. /*ref*/Tirado-González DN, Miranda-Romero LA, Ruíz-Flores A, Medina-Cúellar SE, Ramírez-Valverde R, Tirado-Estrada G. Meta-analysis: effects of exogenous fibrolytic enzymes in ruminant diets. J Appl Anim Res. 2018;46:771-83. Doi: 10.1080/ 09712119.2017.1399135. /*ref*/Tirado-Gonzalez DN, Tirado-Estrada G, Miranda-Romero LA, Ramírez-Valverde R, Medina-Cúellar SE, Salem AZ. Effects of addition of Exogenous fibrolytic enzymes on digestibility and milk and meat production: a systematic review. Ann Anim Sci. 2021;21:1159-92. Doi: 10.2478/aoas-2021-0001. /*ref*/Tricarico JM, Johnston JD, Dawson KA, Hanson KC, McLeod KR, Harmon DL. The effects of an Aspergillus oryzae extract containing alpha-amylase activity on ruminal fermentation and milk production in lactating Holstein cows. Anim Sci. 2005;81:365-74. Doi: 10.1079/ASC50410365. /*ref*/Trujillo AI, Bruni M, Chilibroste P. Nutrient content and nutrient availability of sorghum wet distiller’s grain in comparison with the parental grain for ruminants. J Sci Food Agric. 2017;97:2353-57. Doi: 10.10002/jsfa.8046. /*ref*/Van Soest PJ. Nutritional ecology of the ruminant. 2nd ed. Ithaca: Comstock Publishing Associates; 1994. 488p. /*ref*/Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;174:3583-97. Doi: 10.3168/jds.S0022-0302(91)78551-2. /*ref*/Yang WZ, Beauchemin KA, Rode LM. Effects of an enzyme feed additive on extent of digestion and milk production of lactating dairy cows. J Dairy Sci. 1999;82(2):391-403. Doi: 10.3168/jds.S0022-0302(99)75245-8. Copyright (c) 2024 Agrociencia Uruguay https://creativecommons.org/licenses/by/4.0