Genetic analyses of blood β-hydroxybutyrate predicted from milk infrared spectra and its association with longevity and female reproductive traits in Holstein cattle
Ketosis is one of the most prevalent and complex metabolic disorders in high-producing dairy cows and usually detected through analyses of β-hydroxybutyrate (BHB) concentration in blood. Our main objectives were to evaluate genetic parameters for blood BHB predicted based on Fourier-transform mid-infrared spectra from 5 to 305 d in milk, and estimate the genetic relationships of blood BHB with 7 reproduction traits and 6 longevity traits in Holstein cattle. Predicted blood BHB records of 11,609 Holstein cows (after quality control) were collected from 2016 to 2019 and used to derive 4 traits based on parity number, including predicted blood BHB in all parities (BHBp), parity 1 (BHB1), parity 2 (BHB2), and parity 3+ (BHB3). Single- and multitrait repeatability models were used for estimating genetic parameters for the 4 BHB traits. Random regression test-day models implemented via Bayesian inference were used to evaluate the daily genetic feature of BHB variability. In addition, genetic correlations were calculated for the 4 BHB traits with reproduction and longevity traits. The heritability estimates of BHBp, BHB1, BHB2, and BHB3 ranged from 0.100 ± 0.026 (± standard error) to 0.131 ± 0.023. The BHB in parities 1 to 3+ were highly genetically correlated and ranged from 0.788 (BHB1 and BHB2) to 0.911 (BHB1 and BHB3). The daily heritability of BHBp ranged from 0.069 to 0.195, higher for the early and lower for the later lactation periods. A similar trend was observed for BHB1, BHB2, and BHB3. There are low direct genetic correlations between BHBp and selected reproductive performance and longevity traits, which ranged from −0.168 ± 0.019 (BHBp and production life) to 0.157 ± 0.019 (BHBp and age at first calving) for the early lactation stage (5 to 65 d). These direct genetic correlations indicate that cows with higher BHBp (greater likelihood of having ketosis) in blood usually have shorter production life (−0.168 ± 0.019). Cows with higher fertility and postpartum recovery, such as younger age at first calving (0.157 ± 0.019) and shorter interval from calving to first insemination in heifer (0.111 ± 0.006), usually have lower BHB concentration in the blood. Furthermore, the direct genetic correlations change across parity and lactation stage. In general, our results suggest that selection for lower predicted BHB in early lactation could be an efficient strategy for reducing the incidence of ketosis as well as indirectly improving reproductive and longevity performance in Holstein cattle.
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article/Letter to editor biblioteca |
Language: | English |
Subjects: | Chinese Holstein, metabolic disease, random regression model, β-hydroxybutyrate, |
Online Access: | https://research.wur.nl/en/publications/genetic-analyses-of-blood-β-hydroxybutyrate-predicted-from-milk-i |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-wur-nl-wurpubs-595001 |
---|---|
record_format |
koha |
spelling |
dig-wur-nl-wurpubs-5950012024-12-04 Lou, W. Zhang, H. Luo, H. Chen, Z. Shi, R. Guo, X. Zou, Y. Liu, L. Brito, L.F. Guo, G. Wang, Y. Article/Letter to editor Journal of Dairy Science 105 (2022) 4 ISSN: 0022-0302 Genetic analyses of blood β-hydroxybutyrate predicted from milk infrared spectra and its association with longevity and female reproductive traits in Holstein cattle 2022 Ketosis is one of the most prevalent and complex metabolic disorders in high-producing dairy cows and usually detected through analyses of β-hydroxybutyrate (BHB) concentration in blood. Our main objectives were to evaluate genetic parameters for blood BHB predicted based on Fourier-transform mid-infrared spectra from 5 to 305 d in milk, and estimate the genetic relationships of blood BHB with 7 reproduction traits and 6 longevity traits in Holstein cattle. Predicted blood BHB records of 11,609 Holstein cows (after quality control) were collected from 2016 to 2019 and used to derive 4 traits based on parity number, including predicted blood BHB in all parities (BHBp), parity 1 (BHB1), parity 2 (BHB2), and parity 3+ (BHB3). Single- and multitrait repeatability models were used for estimating genetic parameters for the 4 BHB traits. Random regression test-day models implemented via Bayesian inference were used to evaluate the daily genetic feature of BHB variability. In addition, genetic correlations were calculated for the 4 BHB traits with reproduction and longevity traits. The heritability estimates of BHBp, BHB1, BHB2, and BHB3 ranged from 0.100 ± 0.026 (± standard error) to 0.131 ± 0.023. The BHB in parities 1 to 3+ were highly genetically correlated and ranged from 0.788 (BHB1 and BHB2) to 0.911 (BHB1 and BHB3). The daily heritability of BHBp ranged from 0.069 to 0.195, higher for the early and lower for the later lactation periods. A similar trend was observed for BHB1, BHB2, and BHB3. There are low direct genetic correlations between BHBp and selected reproductive performance and longevity traits, which ranged from −0.168 ± 0.019 (BHBp and production life) to 0.157 ± 0.019 (BHBp and age at first calving) for the early lactation stage (5 to 65 d). These direct genetic correlations indicate that cows with higher BHBp (greater likelihood of having ketosis) in blood usually have shorter production life (−0.168 ± 0.019). Cows with higher fertility and postpartum recovery, such as younger age at first calving (0.157 ± 0.019) and shorter interval from calving to first insemination in heifer (0.111 ± 0.006), usually have lower BHB concentration in the blood. Furthermore, the direct genetic correlations change across parity and lactation stage. In general, our results suggest that selection for lower predicted BHB in early lactation could be an efficient strategy for reducing the incidence of ketosis as well as indirectly improving reproductive and longevity performance in Holstein cattle. en application/pdf https://research.wur.nl/en/publications/genetic-analyses-of-blood-β-hydroxybutyrate-predicted-from-milk-i 10.3168/jds.2021-20389 https://edepot.wur.nl/566030 Chinese Holstein metabolic disease random regression model β-hydroxybutyrate https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/ Wageningen University & Research |
institution |
WUR NL |
collection |
DSpace |
country |
Países bajos |
countrycode |
NL |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-wur-nl |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
WUR Library Netherlands |
language |
English |
topic |
Chinese Holstein metabolic disease random regression model β-hydroxybutyrate Chinese Holstein metabolic disease random regression model β-hydroxybutyrate |
spellingShingle |
Chinese Holstein metabolic disease random regression model β-hydroxybutyrate Chinese Holstein metabolic disease random regression model β-hydroxybutyrate Lou, W. Zhang, H. Luo, H. Chen, Z. Shi, R. Guo, X. Zou, Y. Liu, L. Brito, L.F. Guo, G. Wang, Y. Genetic analyses of blood β-hydroxybutyrate predicted from milk infrared spectra and its association with longevity and female reproductive traits in Holstein cattle |
description |
Ketosis is one of the most prevalent and complex metabolic disorders in high-producing dairy cows and usually detected through analyses of β-hydroxybutyrate (BHB) concentration in blood. Our main objectives were to evaluate genetic parameters for blood BHB predicted based on Fourier-transform mid-infrared spectra from 5 to 305 d in milk, and estimate the genetic relationships of blood BHB with 7 reproduction traits and 6 longevity traits in Holstein cattle. Predicted blood BHB records of 11,609 Holstein cows (after quality control) were collected from 2016 to 2019 and used to derive 4 traits based on parity number, including predicted blood BHB in all parities (BHBp), parity 1 (BHB1), parity 2 (BHB2), and parity 3+ (BHB3). Single- and multitrait repeatability models were used for estimating genetic parameters for the 4 BHB traits. Random regression test-day models implemented via Bayesian inference were used to evaluate the daily genetic feature of BHB variability. In addition, genetic correlations were calculated for the 4 BHB traits with reproduction and longevity traits. The heritability estimates of BHBp, BHB1, BHB2, and BHB3 ranged from 0.100 ± 0.026 (± standard error) to 0.131 ± 0.023. The BHB in parities 1 to 3+ were highly genetically correlated and ranged from 0.788 (BHB1 and BHB2) to 0.911 (BHB1 and BHB3). The daily heritability of BHBp ranged from 0.069 to 0.195, higher for the early and lower for the later lactation periods. A similar trend was observed for BHB1, BHB2, and BHB3. There are low direct genetic correlations between BHBp and selected reproductive performance and longevity traits, which ranged from −0.168 ± 0.019 (BHBp and production life) to 0.157 ± 0.019 (BHBp and age at first calving) for the early lactation stage (5 to 65 d). These direct genetic correlations indicate that cows with higher BHBp (greater likelihood of having ketosis) in blood usually have shorter production life (−0.168 ± 0.019). Cows with higher fertility and postpartum recovery, such as younger age at first calving (0.157 ± 0.019) and shorter interval from calving to first insemination in heifer (0.111 ± 0.006), usually have lower BHB concentration in the blood. Furthermore, the direct genetic correlations change across parity and lactation stage. In general, our results suggest that selection for lower predicted BHB in early lactation could be an efficient strategy for reducing the incidence of ketosis as well as indirectly improving reproductive and longevity performance in Holstein cattle. |
format |
Article/Letter to editor |
topic_facet |
Chinese Holstein metabolic disease random regression model β-hydroxybutyrate |
author |
Lou, W. Zhang, H. Luo, H. Chen, Z. Shi, R. Guo, X. Zou, Y. Liu, L. Brito, L.F. Guo, G. Wang, Y. |
author_facet |
Lou, W. Zhang, H. Luo, H. Chen, Z. Shi, R. Guo, X. Zou, Y. Liu, L. Brito, L.F. Guo, G. Wang, Y. |
author_sort |
Lou, W. |
title |
Genetic analyses of blood β-hydroxybutyrate predicted from milk infrared spectra and its association with longevity and female reproductive traits in Holstein cattle |
title_short |
Genetic analyses of blood β-hydroxybutyrate predicted from milk infrared spectra and its association with longevity and female reproductive traits in Holstein cattle |
title_full |
Genetic analyses of blood β-hydroxybutyrate predicted from milk infrared spectra and its association with longevity and female reproductive traits in Holstein cattle |
title_fullStr |
Genetic analyses of blood β-hydroxybutyrate predicted from milk infrared spectra and its association with longevity and female reproductive traits in Holstein cattle |
title_full_unstemmed |
Genetic analyses of blood β-hydroxybutyrate predicted from milk infrared spectra and its association with longevity and female reproductive traits in Holstein cattle |
title_sort |
genetic analyses of blood β-hydroxybutyrate predicted from milk infrared spectra and its association with longevity and female reproductive traits in holstein cattle |
url |
https://research.wur.nl/en/publications/genetic-analyses-of-blood-β-hydroxybutyrate-predicted-from-milk-i |
work_keys_str_mv |
AT louw geneticanalysesofbloodbhydroxybutyratepredictedfrommilkinfraredspectraanditsassociationwithlongevityandfemalereproductivetraitsinholsteincattle AT zhangh geneticanalysesofbloodbhydroxybutyratepredictedfrommilkinfraredspectraanditsassociationwithlongevityandfemalereproductivetraitsinholsteincattle AT luoh geneticanalysesofbloodbhydroxybutyratepredictedfrommilkinfraredspectraanditsassociationwithlongevityandfemalereproductivetraitsinholsteincattle AT chenz geneticanalysesofbloodbhydroxybutyratepredictedfrommilkinfraredspectraanditsassociationwithlongevityandfemalereproductivetraitsinholsteincattle AT shir geneticanalysesofbloodbhydroxybutyratepredictedfrommilkinfraredspectraanditsassociationwithlongevityandfemalereproductivetraitsinholsteincattle AT guox geneticanalysesofbloodbhydroxybutyratepredictedfrommilkinfraredspectraanditsassociationwithlongevityandfemalereproductivetraitsinholsteincattle AT zouy geneticanalysesofbloodbhydroxybutyratepredictedfrommilkinfraredspectraanditsassociationwithlongevityandfemalereproductivetraitsinholsteincattle AT liul geneticanalysesofbloodbhydroxybutyratepredictedfrommilkinfraredspectraanditsassociationwithlongevityandfemalereproductivetraitsinholsteincattle AT britolf geneticanalysesofbloodbhydroxybutyratepredictedfrommilkinfraredspectraanditsassociationwithlongevityandfemalereproductivetraitsinholsteincattle AT guog geneticanalysesofbloodbhydroxybutyratepredictedfrommilkinfraredspectraanditsassociationwithlongevityandfemalereproductivetraitsinholsteincattle AT wangy geneticanalysesofbloodbhydroxybutyratepredictedfrommilkinfraredspectraanditsassociationwithlongevityandfemalereproductivetraitsinholsteincattle |
_version_ |
1819142978789179392 |