Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000–2005 in the tropics
According to the latest report of the Intergovernmental Panel on Climate Change (IPCC), emissions must be cut by 41–72 % below 2010 levels by 2050 for a likely chance of containing the global mean temperature increase to 2 °C. The AFOLU sector (Agriculture, Forestry and Other Land Use) contributes roughly a quarter ( ∼ 10–12 Pg CO2e yr−1) of the net anthropogenic GHG emissions mainly from deforestation, fire, wood harvesting, and agricultural emissions including croplands, paddy rice, and livestock. In spite of the importance of this sector, it is unclear where the regions with hotspots of AFOLU emissions are and how uncertain these emissions are. Here we present a novel, spatially comparable dataset containing annual mean estimates of gross AFOLU emissions (CO2, CH4, N2O), associated uncertainties, and leading emission sources, in a spatially disaggregated manner (0.5°) for the tropics for the period 2000–2005. Our data highlight the following: (i) the existence of AFOLU emissions hotspots on all continents, with particular importance of evergreen rainforest deforestation in Central and South America, fire in dry forests in Africa, and both peatland emissions and agriculture in Asia; (ii) a predominant contribution of forests and CO2 to the total AFOLU emissions (69 %) and to their uncertainties (98 %); (iii) higher gross fluxes from forests, which coincide with higher uncertainties, making agricultural hotspots appealing for effective mitigation action; and (iv) a lower contribution of non-CO2 agricultural emissions to the total gross emissions (ca. 25 %), with livestock (15.5 %) and rice (7 %) leading the emissions. Gross AFOLU tropical emissions of 8.0 (5.5–12.2) were in the range of other databases (8.4 and 8.0 Pg CO2e yr−1 in FAOSTAT and the Emissions Database for Global Atmospheric Research (EDGAR) respectively), but we offer a spatially detailed benchmark for monitoring progress in reducing emissions from the land sector in the tropics. The location of the AFOLU hotspots of emissions and data on their associated uncertainties will assist national policy makers, investors, and other decision-makers who seek to understand the mitigation potential of the AFOLU sector.
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article/Letter to editor biblioteca |
Language: | English |
Subjects: | Life Science, |
Online Access: | https://research.wur.nl/en/publications/hotspots-of-gross-emissions-from-the-land-use-sector-patterns-unc |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-wur-nl-wurpubs-506918 |
---|---|
record_format |
koha |
spelling |
dig-wur-nl-wurpubs-5069182024-12-04 Roman-cuesta, Rosa Maria Rufino, Mariana C. Herold, Martin Butterbach-bahl, Klaus Rosenstock, Todd S. Herrero, Mario Ogle, Stephen Li, Changsheng Poulter, Benjamin Verchot, Louis Martius, Christopher Stuiver, John De Bruin, Sytze Article/Letter to editor Biogeosciences 13 (2016) 14 ISSN: 1726-4170 Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000–2005 in the tropics 2016 According to the latest report of the Intergovernmental Panel on Climate Change (IPCC), emissions must be cut by 41–72 % below 2010 levels by 2050 for a likely chance of containing the global mean temperature increase to 2 °C. The AFOLU sector (Agriculture, Forestry and Other Land Use) contributes roughly a quarter ( ∼ 10–12 Pg CO2e yr−1) of the net anthropogenic GHG emissions mainly from deforestation, fire, wood harvesting, and agricultural emissions including croplands, paddy rice, and livestock. In spite of the importance of this sector, it is unclear where the regions with hotspots of AFOLU emissions are and how uncertain these emissions are. Here we present a novel, spatially comparable dataset containing annual mean estimates of gross AFOLU emissions (CO2, CH4, N2O), associated uncertainties, and leading emission sources, in a spatially disaggregated manner (0.5°) for the tropics for the period 2000–2005. Our data highlight the following: (i) the existence of AFOLU emissions hotspots on all continents, with particular importance of evergreen rainforest deforestation in Central and South America, fire in dry forests in Africa, and both peatland emissions and agriculture in Asia; (ii) a predominant contribution of forests and CO2 to the total AFOLU emissions (69 %) and to their uncertainties (98 %); (iii) higher gross fluxes from forests, which coincide with higher uncertainties, making agricultural hotspots appealing for effective mitigation action; and (iv) a lower contribution of non-CO2 agricultural emissions to the total gross emissions (ca. 25 %), with livestock (15.5 %) and rice (7 %) leading the emissions. Gross AFOLU tropical emissions of 8.0 (5.5–12.2) were in the range of other databases (8.4 and 8.0 Pg CO2e yr−1 in FAOSTAT and the Emissions Database for Global Atmospheric Research (EDGAR) respectively), but we offer a spatially detailed benchmark for monitoring progress in reducing emissions from the land sector in the tropics. The location of the AFOLU hotspots of emissions and data on their associated uncertainties will assist national policy makers, investors, and other decision-makers who seek to understand the mitigation potential of the AFOLU sector. en application/pdf https://research.wur.nl/en/publications/hotspots-of-gross-emissions-from-the-land-use-sector-patterns-unc 10.5194/bg-13-4253-2016 https://edepot.wur.nl/388599 Life Science https://creativecommons.org/licenses/by/4.0/ Wageningen University & Research |
institution |
WUR NL |
collection |
DSpace |
country |
Países bajos |
countrycode |
NL |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-wur-nl |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
WUR Library Netherlands |
language |
English |
topic |
Life Science Life Science |
spellingShingle |
Life Science Life Science Roman-cuesta, Rosa Maria Rufino, Mariana C. Herold, Martin Butterbach-bahl, Klaus Rosenstock, Todd S. Herrero, Mario Ogle, Stephen Li, Changsheng Poulter, Benjamin Verchot, Louis Martius, Christopher Stuiver, John De Bruin, Sytze Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000–2005 in the tropics |
description |
According to the latest report of the Intergovernmental Panel on Climate Change (IPCC), emissions must be cut by 41–72 % below 2010 levels by 2050 for a likely chance of containing the global mean temperature increase to 2 °C. The AFOLU sector (Agriculture, Forestry and Other Land Use) contributes roughly a quarter ( ∼ 10–12 Pg CO2e yr−1) of the net anthropogenic GHG emissions mainly from deforestation, fire, wood harvesting, and agricultural emissions including croplands, paddy rice, and livestock. In spite of the importance of this sector, it is unclear where the regions with hotspots of AFOLU emissions are and how uncertain these emissions are. Here we present a novel, spatially comparable dataset containing annual mean estimates of gross AFOLU emissions (CO2, CH4, N2O), associated uncertainties, and leading emission sources, in a spatially disaggregated manner (0.5°) for the tropics for the period 2000–2005. Our data highlight the following: (i) the existence of AFOLU emissions hotspots on all continents, with particular importance of evergreen rainforest deforestation in Central and South America, fire in dry forests in Africa, and both peatland emissions and agriculture in Asia; (ii) a predominant contribution of forests and CO2 to the total AFOLU emissions (69 %) and to their uncertainties (98 %); (iii) higher gross fluxes from forests, which coincide with higher uncertainties, making agricultural hotspots appealing for effective mitigation action; and (iv) a lower contribution of non-CO2 agricultural emissions to the total gross emissions (ca. 25 %), with livestock (15.5 %) and rice (7 %) leading the emissions. Gross AFOLU tropical emissions of 8.0 (5.5–12.2) were in the range of other databases (8.4 and 8.0 Pg CO2e yr−1 in FAOSTAT and the Emissions Database for Global Atmospheric Research (EDGAR) respectively), but we offer a spatially detailed benchmark for monitoring progress in reducing emissions from the land sector in the tropics. The location of the AFOLU hotspots of emissions and data on their associated uncertainties will assist national policy makers, investors, and other decision-makers who seek to understand the mitigation potential of the AFOLU sector. |
format |
Article/Letter to editor |
topic_facet |
Life Science |
author |
Roman-cuesta, Rosa Maria Rufino, Mariana C. Herold, Martin Butterbach-bahl, Klaus Rosenstock, Todd S. Herrero, Mario Ogle, Stephen Li, Changsheng Poulter, Benjamin Verchot, Louis Martius, Christopher Stuiver, John De Bruin, Sytze |
author_facet |
Roman-cuesta, Rosa Maria Rufino, Mariana C. Herold, Martin Butterbach-bahl, Klaus Rosenstock, Todd S. Herrero, Mario Ogle, Stephen Li, Changsheng Poulter, Benjamin Verchot, Louis Martius, Christopher Stuiver, John De Bruin, Sytze |
author_sort |
Roman-cuesta, Rosa Maria |
title |
Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000–2005 in the tropics |
title_short |
Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000–2005 in the tropics |
title_full |
Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000–2005 in the tropics |
title_fullStr |
Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000–2005 in the tropics |
title_full_unstemmed |
Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000–2005 in the tropics |
title_sort |
hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000–2005 in the tropics |
url |
https://research.wur.nl/en/publications/hotspots-of-gross-emissions-from-the-land-use-sector-patterns-unc |
work_keys_str_mv |
AT romancuestarosamaria hotspotsofgrossemissionsfromthelandusesectorpatternsuncertaintiesandleadingemissionsourcesfortheperiod20002005inthetropics AT rufinomarianac hotspotsofgrossemissionsfromthelandusesectorpatternsuncertaintiesandleadingemissionsourcesfortheperiod20002005inthetropics AT heroldmartin hotspotsofgrossemissionsfromthelandusesectorpatternsuncertaintiesandleadingemissionsourcesfortheperiod20002005inthetropics AT butterbachbahlklaus hotspotsofgrossemissionsfromthelandusesectorpatternsuncertaintiesandleadingemissionsourcesfortheperiod20002005inthetropics AT rosenstocktodds hotspotsofgrossemissionsfromthelandusesectorpatternsuncertaintiesandleadingemissionsourcesfortheperiod20002005inthetropics AT herreromario hotspotsofgrossemissionsfromthelandusesectorpatternsuncertaintiesandleadingemissionsourcesfortheperiod20002005inthetropics AT oglestephen hotspotsofgrossemissionsfromthelandusesectorpatternsuncertaintiesandleadingemissionsourcesfortheperiod20002005inthetropics AT lichangsheng hotspotsofgrossemissionsfromthelandusesectorpatternsuncertaintiesandleadingemissionsourcesfortheperiod20002005inthetropics AT poulterbenjamin hotspotsofgrossemissionsfromthelandusesectorpatternsuncertaintiesandleadingemissionsourcesfortheperiod20002005inthetropics AT verchotlouis hotspotsofgrossemissionsfromthelandusesectorpatternsuncertaintiesandleadingemissionsourcesfortheperiod20002005inthetropics AT martiuschristopher hotspotsofgrossemissionsfromthelandusesectorpatternsuncertaintiesandleadingemissionsourcesfortheperiod20002005inthetropics AT stuiverjohn hotspotsofgrossemissionsfromthelandusesectorpatternsuncertaintiesandleadingemissionsourcesfortheperiod20002005inthetropics AT debruinsytze hotspotsofgrossemissionsfromthelandusesectorpatternsuncertaintiesandleadingemissionsourcesfortheperiod20002005inthetropics |
_version_ |
1819147842640412672 |