Effect of high-sugar grasses on methane emissions simulated using a dynamic model
High-sugar grass varieties have received considerable attention for their potential ability to decrease N excretion in cattle. However, feeding high-sugar grasses alters the pattern of rumen fermentation, and no in vivo studies to date have examined this strategy with respect to another environmental pollutant: methane (CH4). Modeling allows us to examine potential outcomes of feeding strategies under controlled conditions, and can provide a useful framework for the development of future experiments. The purpose of the present study was to use a modeling approach to evaluate the effect of high-sugar grasses on simulated CH4 emissions in dairy cattle. An extant dynamic, mechanistic model of enteric fermentation and intestinal digestion was used for this evaluation. A simulation database was constructed and analysis of model behavior was undertaken to simulate the effect of (1) level of water-soluble carbohydrate (WSC) increase in dietary dry matter, (2) change in crude protein (CP) and neutral detergent fiber (NDF) content of the plant with an increased WSC content, (3) level of N fertilization, and (4) presence or absence of grain feeding. Simulated CH4 emissions tended to increase with increased WSC content when CH4 was expressed as megajoules per day or percent of gross energy intake, but when CH4 was expressed in terms of grams per kilogram of milk, results were much more variable due to the potential increase in milk yield. As a result, under certain conditions, CH4 (g/kg of milk) decreased. The largest increases in CH4 emissions (MJ/d or % gross energy intake) were generally seen when WSC increased at the expense of CP in the diet and this can largely be explained by the representation in the model of the type of volatile fatty acid produced. Effects were lower when WSC increased at the expense of NDF, and intermediary when WSC increased at the expense of a mixture of CP and NDF. When WSC increased at the expense of NDF, simulated milk yield increased and, therefore, CH4 (g/kg of milk) tended to decrease. Diminished increases of CH4 (% gross energy intake or g/kg of milk) were simulated when DMI was increased with elevated WSC content. Simulation results suggest that high WSC grass, as a strategy to mitigate N emission, may increase CH4 emissions, but that results depend on the grass composition, DMI, and the units chosen to express CH4. Overall, this project demonstrates the usefulness of modeling for hypothesis testing in the absence of observed experimental results.
Main Authors: | , , , , , , , |
---|---|
Format: | Article/Letter to editor biblioteca |
Language: | English |
Subjects: | dairy-cows, in-vitro, lactating cow, mechanistic model, milk-production, neutral detergent fiber, nitrogen-utilization, offered lolium-perenne, perennial ryegrass cultivars, water-soluble carbohydrate, |
Online Access: | https://research.wur.nl/en/publications/effect-of-high-sugar-grasses-on-methane-emissions-simulated-using |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-wur-nl-wurpubs-423231 |
---|---|
record_format |
koha |
spelling |
dig-wur-nl-wurpubs-4232312024-12-04 St-Pierre, J.L. Dijkstra, J. France, J. Parsons, A.J. Edwards, G.R. Rasmussen, S. Kebreab, E. Bannink, A. Article/Letter to editor Journal of Dairy Science 95 (2012) 1 ISSN: 0022-0302 Effect of high-sugar grasses on methane emissions simulated using a dynamic model 2012 High-sugar grass varieties have received considerable attention for their potential ability to decrease N excretion in cattle. However, feeding high-sugar grasses alters the pattern of rumen fermentation, and no in vivo studies to date have examined this strategy with respect to another environmental pollutant: methane (CH4). Modeling allows us to examine potential outcomes of feeding strategies under controlled conditions, and can provide a useful framework for the development of future experiments. The purpose of the present study was to use a modeling approach to evaluate the effect of high-sugar grasses on simulated CH4 emissions in dairy cattle. An extant dynamic, mechanistic model of enteric fermentation and intestinal digestion was used for this evaluation. A simulation database was constructed and analysis of model behavior was undertaken to simulate the effect of (1) level of water-soluble carbohydrate (WSC) increase in dietary dry matter, (2) change in crude protein (CP) and neutral detergent fiber (NDF) content of the plant with an increased WSC content, (3) level of N fertilization, and (4) presence or absence of grain feeding. Simulated CH4 emissions tended to increase with increased WSC content when CH4 was expressed as megajoules per day or percent of gross energy intake, but when CH4 was expressed in terms of grams per kilogram of milk, results were much more variable due to the potential increase in milk yield. As a result, under certain conditions, CH4 (g/kg of milk) decreased. The largest increases in CH4 emissions (MJ/d or % gross energy intake) were generally seen when WSC increased at the expense of CP in the diet and this can largely be explained by the representation in the model of the type of volatile fatty acid produced. Effects were lower when WSC increased at the expense of NDF, and intermediary when WSC increased at the expense of a mixture of CP and NDF. When WSC increased at the expense of NDF, simulated milk yield increased and, therefore, CH4 (g/kg of milk) tended to decrease. Diminished increases of CH4 (% gross energy intake or g/kg of milk) were simulated when DMI was increased with elevated WSC content. Simulation results suggest that high WSC grass, as a strategy to mitigate N emission, may increase CH4 emissions, but that results depend on the grass composition, DMI, and the units chosen to express CH4. Overall, this project demonstrates the usefulness of modeling for hypothesis testing in the absence of observed experimental results. en application/pdf https://research.wur.nl/en/publications/effect-of-high-sugar-grasses-on-methane-emissions-simulated-using 10.3168/jds.2011-4385 https://edepot.wur.nl/202305 dairy-cows in-vitro lactating cow mechanistic model milk-production neutral detergent fiber nitrogen-utilization offered lolium-perenne perennial ryegrass cultivars water-soluble carbohydrate Wageningen University & Research |
institution |
WUR NL |
collection |
DSpace |
country |
Países bajos |
countrycode |
NL |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-wur-nl |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
WUR Library Netherlands |
language |
English |
topic |
dairy-cows in-vitro lactating cow mechanistic model milk-production neutral detergent fiber nitrogen-utilization offered lolium-perenne perennial ryegrass cultivars water-soluble carbohydrate dairy-cows in-vitro lactating cow mechanistic model milk-production neutral detergent fiber nitrogen-utilization offered lolium-perenne perennial ryegrass cultivars water-soluble carbohydrate |
spellingShingle |
dairy-cows in-vitro lactating cow mechanistic model milk-production neutral detergent fiber nitrogen-utilization offered lolium-perenne perennial ryegrass cultivars water-soluble carbohydrate dairy-cows in-vitro lactating cow mechanistic model milk-production neutral detergent fiber nitrogen-utilization offered lolium-perenne perennial ryegrass cultivars water-soluble carbohydrate St-Pierre, J.L. Dijkstra, J. France, J. Parsons, A.J. Edwards, G.R. Rasmussen, S. Kebreab, E. Bannink, A. Effect of high-sugar grasses on methane emissions simulated using a dynamic model |
description |
High-sugar grass varieties have received considerable attention for their potential ability to decrease N excretion in cattle. However, feeding high-sugar grasses alters the pattern of rumen fermentation, and no in vivo studies to date have examined this strategy with respect to another environmental pollutant: methane (CH4). Modeling allows us to examine potential outcomes of feeding strategies under controlled conditions, and can provide a useful framework for the development of future experiments. The purpose of the present study was to use a modeling approach to evaluate the effect of high-sugar grasses on simulated CH4 emissions in dairy cattle. An extant dynamic, mechanistic model of enteric fermentation and intestinal digestion was used for this evaluation. A simulation database was constructed and analysis of model behavior was undertaken to simulate the effect of (1) level of water-soluble carbohydrate (WSC) increase in dietary dry matter, (2) change in crude protein (CP) and neutral detergent fiber (NDF) content of the plant with an increased WSC content, (3) level of N fertilization, and (4) presence or absence of grain feeding. Simulated CH4 emissions tended to increase with increased WSC content when CH4 was expressed as megajoules per day or percent of gross energy intake, but when CH4 was expressed in terms of grams per kilogram of milk, results were much more variable due to the potential increase in milk yield. As a result, under certain conditions, CH4 (g/kg of milk) decreased. The largest increases in CH4 emissions (MJ/d or % gross energy intake) were generally seen when WSC increased at the expense of CP in the diet and this can largely be explained by the representation in the model of the type of volatile fatty acid produced. Effects were lower when WSC increased at the expense of NDF, and intermediary when WSC increased at the expense of a mixture of CP and NDF. When WSC increased at the expense of NDF, simulated milk yield increased and, therefore, CH4 (g/kg of milk) tended to decrease. Diminished increases of CH4 (% gross energy intake or g/kg of milk) were simulated when DMI was increased with elevated WSC content. Simulation results suggest that high WSC grass, as a strategy to mitigate N emission, may increase CH4 emissions, but that results depend on the grass composition, DMI, and the units chosen to express CH4. Overall, this project demonstrates the usefulness of modeling for hypothesis testing in the absence of observed experimental results. |
format |
Article/Letter to editor |
topic_facet |
dairy-cows in-vitro lactating cow mechanistic model milk-production neutral detergent fiber nitrogen-utilization offered lolium-perenne perennial ryegrass cultivars water-soluble carbohydrate |
author |
St-Pierre, J.L. Dijkstra, J. France, J. Parsons, A.J. Edwards, G.R. Rasmussen, S. Kebreab, E. Bannink, A. |
author_facet |
St-Pierre, J.L. Dijkstra, J. France, J. Parsons, A.J. Edwards, G.R. Rasmussen, S. Kebreab, E. Bannink, A. |
author_sort |
St-Pierre, J.L. |
title |
Effect of high-sugar grasses on methane emissions simulated using a dynamic model |
title_short |
Effect of high-sugar grasses on methane emissions simulated using a dynamic model |
title_full |
Effect of high-sugar grasses on methane emissions simulated using a dynamic model |
title_fullStr |
Effect of high-sugar grasses on methane emissions simulated using a dynamic model |
title_full_unstemmed |
Effect of high-sugar grasses on methane emissions simulated using a dynamic model |
title_sort |
effect of high-sugar grasses on methane emissions simulated using a dynamic model |
url |
https://research.wur.nl/en/publications/effect-of-high-sugar-grasses-on-methane-emissions-simulated-using |
work_keys_str_mv |
AT stpierrejl effectofhighsugargrassesonmethaneemissionssimulatedusingadynamicmodel AT dijkstraj effectofhighsugargrassesonmethaneemissionssimulatedusingadynamicmodel AT francej effectofhighsugargrassesonmethaneemissionssimulatedusingadynamicmodel AT parsonsaj effectofhighsugargrassesonmethaneemissionssimulatedusingadynamicmodel AT edwardsgr effectofhighsugargrassesonmethaneemissionssimulatedusingadynamicmodel AT rasmussens effectofhighsugargrassesonmethaneemissionssimulatedusingadynamicmodel AT kebreabe effectofhighsugargrassesonmethaneemissionssimulatedusingadynamicmodel AT banninka effectofhighsugargrassesonmethaneemissionssimulatedusingadynamicmodel |
_version_ |
1819149353107849216 |