Differences in the chemical structures of the lignins from sugarcane bagasse and straw

Two major residues are produced by the sugarcane industry, the fibrous fraction following juice extraction (bagasse), and the harvest residue (straw). The structures of the lignins from these residues were studied by pyrolysis coupled to gas chromatography-mass spectrometry (Py-GC/MS), nuclear magnetic resonance (NMR), and derivatization followed by reductive cleavage (DFRC). Whereas the lignin from bagasse has a syringyl-rich p-hydroxyphenyl:guaiacyl:syringyl (H:G:S) molar composition of 2:38:60, the lignin from straw is guaiacyl-rich (H:G:S of 4:68:28). The compositional differences were also reflected in the relative abundances of the different interunit linkages. Bagasse lignin was primarily β–O–4′ alkyl-aryl ether units (representing 83% of NMR-measurable units), followed by minor amounts of β–5′ (phenylcoumarans, 6%) and other condensed units. The lignin from straw has lower levels of β-ethers (75%) but higher relative levels of phenylcoumarans (β–5′, 15%) and dibenzodioxocins (5–5/4–O–β, 3%), consistent with a lignin enriched in G-units. Both lignins are extensively acylated at the γ-hydroxyl of the lignin side-chain (42% and 36% acylation in bagasse and straw), predominantly with p-coumarates (preferentially on S-units) but also with acetates (preferentially on G-units) to a minor extent. Tetrahydrofuran structures diagnostically arising from β–β-coupling (dehydrodimerization) of sinapyl p-coumarate or its cross-coupling with sinapyl alcohol were found in both lignins, indicating that sinapyl p-coumarate acts as a monomer participating in lignification. The flavone tricin was also found in the lignins from sugarcane, as also occurs in other grasses.

Saved in:
Bibliographic Details
Main Authors: Río Andrade, José Carlos del, Lino, Alessandro Guarino, Colodette, Jorge Luiz, Lima, Claudio Ferreira, Gutiérrez Suárez, Ana, Martínez, Ángel T., Lu, Fachuang, Ralph, John, Rencoret, Jorge
Other Authors: Ministerio de Ciencia e Innovación (España)
Format: artículo biblioteca
Language:English
Published: Elsevier
Subjects:Saccharum spp., NMR, DFRC, Tricin, Lignin acylation, p-Coumarates,
Online Access:http://hdl.handle.net/10261/123778
http://dx.doi.org/10.13039/501100004837
http://dx.doi.org/10.13039/501100003329
http://dx.doi.org/10.13039/501100003339
http://dx.doi.org/10.13039/501100000780
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two major residues are produced by the sugarcane industry, the fibrous fraction following juice extraction (bagasse), and the harvest residue (straw). The structures of the lignins from these residues were studied by pyrolysis coupled to gas chromatography-mass spectrometry (Py-GC/MS), nuclear magnetic resonance (NMR), and derivatization followed by reductive cleavage (DFRC). Whereas the lignin from bagasse has a syringyl-rich p-hydroxyphenyl:guaiacyl:syringyl (H:G:S) molar composition of 2:38:60, the lignin from straw is guaiacyl-rich (H:G:S of 4:68:28). The compositional differences were also reflected in the relative abundances of the different interunit linkages. Bagasse lignin was primarily β–O–4′ alkyl-aryl ether units (representing 83% of NMR-measurable units), followed by minor amounts of β–5′ (phenylcoumarans, 6%) and other condensed units. The lignin from straw has lower levels of β-ethers (75%) but higher relative levels of phenylcoumarans (β–5′, 15%) and dibenzodioxocins (5–5/4–O–β, 3%), consistent with a lignin enriched in G-units. Both lignins are extensively acylated at the γ-hydroxyl of the lignin side-chain (42% and 36% acylation in bagasse and straw), predominantly with p-coumarates (preferentially on S-units) but also with acetates (preferentially on G-units) to a minor extent. Tetrahydrofuran structures diagnostically arising from β–β-coupling (dehydrodimerization) of sinapyl p-coumarate or its cross-coupling with sinapyl alcohol were found in both lignins, indicating that sinapyl p-coumarate acts as a monomer participating in lignification. The flavone tricin was also found in the lignins from sugarcane, as also occurs in other grasses.