Low-cost assessment of grain yield in durum wheat using RGB images
11 Pág.
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | artículo biblioteca |
Language: | English |
Published: |
Elsevier
2019-04
|
Subjects: | Abiotic stresses, Digital image processing, Durum wheat, Grain yield, Heritability, Low-cost phenotyping, NDVI, RGB indices, |
Online Access: | http://hdl.handle.net/10261/370644 https://api.elsevier.com/content/abstract/scopus_id/85062281890 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-inia-es-10261-370644 |
---|---|
record_format |
koha |
spelling |
dig-inia-es-10261-3706442024-10-30T21:36:57Z Low-cost assessment of grain yield in durum wheat using RGB images Fernandez-Gallego, J. A. Kefauver, Shawn C. Vatter, Thomas Aparicio, Nieves Nieto-Taladriz, María Teresa Araus, José Luis CSIC - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Instituto Tecnológico Agrario de Castilla y León Universidad del Tolima Generalitat de Catalunya Fernandez-Gallego, J. A. [0000-0001-8928-4801] Kefauver, Shawn C. [0000-0002-1687-1965] Vatter, Thomas [0000-0001-7344-6351] Aparicio, Nieves [0000-0003-4518-3667] Nieto-Taladriz, María Teresa [0000-0001-6119-4249] Araus, José Luis [0000-0002-8866-2388] Abiotic stresses Digital image processing Durum wheat Grain yield Heritability Low-cost phenotyping NDVI RGB indices 11 Pág. The pattern of photosynthetic area of the canopy throughout the crop cycle is an important factor for determining grain yield in wheat. This work proposes the use of zenithal RGB images of the canopy taken in natural light conditions to derive vegetation indices as a low-cost approach to predict grain yield. A set of 23 varieties of durum wheat was monitored in three growing conditions (support irrigation, rainfed and late planting) and two sites (Aranjuez and Valladolid, Spain), totalling 6 field trials. For each plot, digital RGB images were taken periodically from seedling emergence to late grain filling. RGB-based Green Area (GA), Greener Area (GGA), Normalized Green Red Difference Index (NGRDI), Triangular Greenness Index (TGI) and a novel photosynthetic area index based on the CIE L * u * v * colour space (u * v * A) were compared to handheld spectroradiometer Normalised Difference Vegetation Index (NDVI) for reference. In the case of the irrigated and late planting trials the best phenotypic predictions of grain yield were achieved with the vegetation indices measured during the last part of the crop cycle (i.e. grain filling). For the rainfed trials the best phenotypic predictions were achieved with indices measured earlier (around heading). Among all the evaluated indices, the novel index performed the best. Considering the heritabilities of the evaluated RGB indices and their genetic correlations with grain yield, index-based predictions of grain yield were best in the early crop stages for both rainfed and irrigated conditions, while for late planting indices measured at different crop stages performed equally well. The authors of this research would like to thank the field management staff at the experimental stations of Colmenar de Oreja (Aranjuez) of the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and Zamadueñas (Valladolid) of the Instituto de Tecnología Agraria de Castilla y León (ITACyL) for their continued support of our research. This work was supported by MINECO, Spain [project number AGL2016-76527-R] as the primary funding support for the research project; and the project “Formación de Talento Humano de Alto Nivel” [project number BPIN 2013000100103] approved by the “Fondo de Ciencia, Tecnología e Innovación”, from the “Sistema General de Regalías”, “Gobernación del Tolima - Universidad del Tolima, Colombia” as the sole funding source of the first author JAF. JLA acknowledges the support from ICREA Academia, Generalitat de Catalunya, Spain. Peer reviewed 2024-10-30T17:44:48Z 2024-10-30T17:44:48Z 2019-04 artículo European Journal of Agronomy 105: 146-156 (2019) 1161-0301 http://hdl.handle.net/10261/370644 10.1016/j.eja.2019.02.007 1873-7331 2-s2.0-85062281890 https://api.elsevier.com/content/abstract/scopus_id/85062281890 en #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/MINECO//AGL2016-76527-R Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Publisher's version https://doi.org/10.1016/j.eja.2019.02.007 Sí open Elsevier |
institution |
INIA ES |
collection |
DSpace |
country |
España |
countrycode |
ES |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-inia-es |
tag |
biblioteca |
region |
Europa del Sur |
libraryname |
Biblioteca del INIA España |
language |
English |
topic |
Abiotic stresses Digital image processing Durum wheat Grain yield Heritability Low-cost phenotyping NDVI RGB indices Abiotic stresses Digital image processing Durum wheat Grain yield Heritability Low-cost phenotyping NDVI RGB indices |
spellingShingle |
Abiotic stresses Digital image processing Durum wheat Grain yield Heritability Low-cost phenotyping NDVI RGB indices Abiotic stresses Digital image processing Durum wheat Grain yield Heritability Low-cost phenotyping NDVI RGB indices Fernandez-Gallego, J. A. Kefauver, Shawn C. Vatter, Thomas Aparicio, Nieves Nieto-Taladriz, María Teresa Araus, José Luis Low-cost assessment of grain yield in durum wheat using RGB images |
description |
11 Pág. |
author2 |
CSIC - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) |
author_facet |
CSIC - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Fernandez-Gallego, J. A. Kefauver, Shawn C. Vatter, Thomas Aparicio, Nieves Nieto-Taladriz, María Teresa Araus, José Luis |
format |
artículo |
topic_facet |
Abiotic stresses Digital image processing Durum wheat Grain yield Heritability Low-cost phenotyping NDVI RGB indices |
author |
Fernandez-Gallego, J. A. Kefauver, Shawn C. Vatter, Thomas Aparicio, Nieves Nieto-Taladriz, María Teresa Araus, José Luis |
author_sort |
Fernandez-Gallego, J. A. |
title |
Low-cost assessment of grain yield in durum wheat using RGB images |
title_short |
Low-cost assessment of grain yield in durum wheat using RGB images |
title_full |
Low-cost assessment of grain yield in durum wheat using RGB images |
title_fullStr |
Low-cost assessment of grain yield in durum wheat using RGB images |
title_full_unstemmed |
Low-cost assessment of grain yield in durum wheat using RGB images |
title_sort |
low-cost assessment of grain yield in durum wheat using rgb images |
publisher |
Elsevier |
publishDate |
2019-04 |
url |
http://hdl.handle.net/10261/370644 https://api.elsevier.com/content/abstract/scopus_id/85062281890 |
work_keys_str_mv |
AT fernandezgallegoja lowcostassessmentofgrainyieldindurumwheatusingrgbimages AT kefauvershawnc lowcostassessmentofgrainyieldindurumwheatusingrgbimages AT vatterthomas lowcostassessmentofgrainyieldindurumwheatusingrgbimages AT aparicionieves lowcostassessmentofgrainyieldindurumwheatusingrgbimages AT nietotaladrizmariateresa lowcostassessmentofgrainyieldindurumwheatusingrgbimages AT arausjoseluis lowcostassessmentofgrainyieldindurumwheatusingrgbimages |
_version_ |
1816136774947176448 |