Low-cost assessment of grain yield in durum wheat using RGB images

11 Pág.

Saved in:
Bibliographic Details
Main Authors: Fernandez-Gallego, J. A., Kefauver, Shawn C., Vatter, Thomas, Aparicio, Nieves, Nieto-Taladriz, María Teresa, Araus, José Luis
Other Authors: CSIC - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)
Format: artículo biblioteca
Language:English
Published: Elsevier 2019-04
Subjects:Abiotic stresses, Digital image processing, Durum wheat, Grain yield, Heritability, Low-cost phenotyping, NDVI, RGB indices,
Online Access:http://hdl.handle.net/10261/370644
https://api.elsevier.com/content/abstract/scopus_id/85062281890
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-inia-es-10261-370644
record_format koha
spelling dig-inia-es-10261-3706442024-10-30T21:36:57Z Low-cost assessment of grain yield in durum wheat using RGB images Fernandez-Gallego, J. A. Kefauver, Shawn C. Vatter, Thomas Aparicio, Nieves Nieto-Taladriz, María Teresa Araus, José Luis CSIC - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Instituto Tecnológico Agrario de Castilla y León Universidad del Tolima Generalitat de Catalunya Fernandez-Gallego, J. A. [0000-0001-8928-4801] Kefauver, Shawn C. [0000-0002-1687-1965] Vatter, Thomas [0000-0001-7344-6351] Aparicio, Nieves [0000-0003-4518-3667] Nieto-Taladriz, María Teresa [0000-0001-6119-4249] Araus, José Luis [0000-0002-8866-2388] Abiotic stresses Digital image processing Durum wheat Grain yield Heritability Low-cost phenotyping NDVI RGB indices 11 Pág. The pattern of photosynthetic area of the canopy throughout the crop cycle is an important factor for determining grain yield in wheat. This work proposes the use of zenithal RGB images of the canopy taken in natural light conditions to derive vegetation indices as a low-cost approach to predict grain yield. A set of 23 varieties of durum wheat was monitored in three growing conditions (support irrigation, rainfed and late planting) and two sites (Aranjuez and Valladolid, Spain), totalling 6 field trials. For each plot, digital RGB images were taken periodically from seedling emergence to late grain filling. RGB-based Green Area (GA), Greener Area (GGA), Normalized Green Red Difference Index (NGRDI), Triangular Greenness Index (TGI) and a novel photosynthetic area index based on the CIE L * u * v * colour space (u * v * A) were compared to handheld spectroradiometer Normalised Difference Vegetation Index (NDVI) for reference. In the case of the irrigated and late planting trials the best phenotypic predictions of grain yield were achieved with the vegetation indices measured during the last part of the crop cycle (i.e. grain filling). For the rainfed trials the best phenotypic predictions were achieved with indices measured earlier (around heading). Among all the evaluated indices, the novel index performed the best. Considering the heritabilities of the evaluated RGB indices and their genetic correlations with grain yield, index-based predictions of grain yield were best in the early crop stages for both rainfed and irrigated conditions, while for late planting indices measured at different crop stages performed equally well. The authors of this research would like to thank the field management staff at the experimental stations of Colmenar de Oreja (Aranjuez) of the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and Zamadueñas (Valladolid) of the Instituto de Tecnología Agraria de Castilla y León (ITACyL) for their continued support of our research. This work was supported by MINECO, Spain [project number AGL2016-76527-R] as the primary funding support for the research project; and the project “Formación de Talento Humano de Alto Nivel” [project number BPIN 2013000100103] approved by the “Fondo de Ciencia, Tecnología e Innovación”, from the “Sistema General de Regalías”, “Gobernación del Tolima - Universidad del Tolima, Colombia” as the sole funding source of the first author JAF. JLA acknowledges the support from ICREA Academia, Generalitat de Catalunya, Spain. Peer reviewed 2024-10-30T17:44:48Z 2024-10-30T17:44:48Z 2019-04 artículo European Journal of Agronomy 105: 146-156 (2019) 1161-0301 http://hdl.handle.net/10261/370644 10.1016/j.eja.2019.02.007 1873-7331 2-s2.0-85062281890 https://api.elsevier.com/content/abstract/scopus_id/85062281890 en #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/MINECO//AGL2016-76527-R Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Publisher's version https://doi.org/10.1016/j.eja.2019.02.007 Sí open Elsevier
institution INIA ES
collection DSpace
country España
countrycode ES
component Bibliográfico
access En linea
databasecode dig-inia-es
tag biblioteca
region Europa del Sur
libraryname Biblioteca del INIA España
language English
topic Abiotic stresses
Digital image processing
Durum wheat
Grain yield
Heritability
Low-cost phenotyping
NDVI
RGB indices
Abiotic stresses
Digital image processing
Durum wheat
Grain yield
Heritability
Low-cost phenotyping
NDVI
RGB indices
spellingShingle Abiotic stresses
Digital image processing
Durum wheat
Grain yield
Heritability
Low-cost phenotyping
NDVI
RGB indices
Abiotic stresses
Digital image processing
Durum wheat
Grain yield
Heritability
Low-cost phenotyping
NDVI
RGB indices
Fernandez-Gallego, J. A.
Kefauver, Shawn C.
Vatter, Thomas
Aparicio, Nieves
Nieto-Taladriz, María Teresa
Araus, José Luis
Low-cost assessment of grain yield in durum wheat using RGB images
description 11 Pág.
author2 CSIC - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)
author_facet CSIC - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)
Fernandez-Gallego, J. A.
Kefauver, Shawn C.
Vatter, Thomas
Aparicio, Nieves
Nieto-Taladriz, María Teresa
Araus, José Luis
format artículo
topic_facet Abiotic stresses
Digital image processing
Durum wheat
Grain yield
Heritability
Low-cost phenotyping
NDVI
RGB indices
author Fernandez-Gallego, J. A.
Kefauver, Shawn C.
Vatter, Thomas
Aparicio, Nieves
Nieto-Taladriz, María Teresa
Araus, José Luis
author_sort Fernandez-Gallego, J. A.
title Low-cost assessment of grain yield in durum wheat using RGB images
title_short Low-cost assessment of grain yield in durum wheat using RGB images
title_full Low-cost assessment of grain yield in durum wheat using RGB images
title_fullStr Low-cost assessment of grain yield in durum wheat using RGB images
title_full_unstemmed Low-cost assessment of grain yield in durum wheat using RGB images
title_sort low-cost assessment of grain yield in durum wheat using rgb images
publisher Elsevier
publishDate 2019-04
url http://hdl.handle.net/10261/370644
https://api.elsevier.com/content/abstract/scopus_id/85062281890
work_keys_str_mv AT fernandezgallegoja lowcostassessmentofgrainyieldindurumwheatusingrgbimages
AT kefauvershawnc lowcostassessmentofgrainyieldindurumwheatusingrgbimages
AT vatterthomas lowcostassessmentofgrainyieldindurumwheatusingrgbimages
AT aparicionieves lowcostassessmentofgrainyieldindurumwheatusingrgbimages
AT nietotaladrizmariateresa lowcostassessmentofgrainyieldindurumwheatusingrgbimages
AT arausjoseluis lowcostassessmentofgrainyieldindurumwheatusingrgbimages
_version_ 1816136774947176448