Uavs for vegetation monitoring: Overview and recent scientific contributions
13 Pág.
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | artículo biblioteca |
Language: | English |
Published: |
Multidisciplinary Digital Publishing Institute
2021-05-29
|
Subjects: | Disease diagnosis, Drone, RGB, Multispectral, Hyperspectral, Thermal, Machine learning, |
Online Access: | http://hdl.handle.net/10261/287390 http://dx.doi.org/10.13039/100005825 http://dx.doi.org/10.13039/501100011033 http://dx.doi.org/10.13039/501100000780 https://api.elsevier.com/content/abstract/scopus_id/85107883316 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-inia-es-10261-287390 |
---|---|
record_format |
koha |
spelling |
dig-inia-es-10261-2873902024-10-29T21:42:11Z Uavs for vegetation monitoring: Overview and recent scientific contributions Castro, Ana Isabel de Shi, Yeyin Maja, Joe Mari Peña Barragán, José Manuel Agencia Estatal de Investigación (España) European Commission National Institute of Food and Agriculture (US) de Castro, Ana I. [0000-0002-6699-2204] Shi, Yeyin [0000-0003-3964-2855] Peña, Jose M. [0000-0003-4592-3792] Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72] Disease diagnosis Drone RGB Multispectral Hyperspectral Thermal Machine learning 13 Pág. This paper reviewed a set of twenty-one original and innovative papers included in a special issue on UAVs for vegetation monitoring, which proposed new methods and techniques applied to diverse agricultural and forestry scenarios. Three general categories were considered: (1) sensors and vegetation indices used, (2) technological goals pursued, and (3) agroforestry applications. Some investigations focused on issues related to UAV flight operations, spatial resolution requirements, and computation and data analytics, while others studied the ability of UAVs for characterizing relevant vegetation features (mainly canopy cover and crop height) or for detecting different plant/crop stressors, such as nutrient content/deficiencies, water needs, weeds, and diseases. The general goal was proposing UAV-based technological solutions for a better use of agricultural and forestry resources and more efficient production with relevant economic and environmental benefits. This research was funded by the project AGL2017-83325-C4-1R of Agencia Española de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER). The contribution of Dr. Shi and Dr. Maja were supported by the Nebraska Agricultural Experiment Station through the Hatch Act capacity funding program (Accession Number 1011130) and Project No. SC-1700543 from the USDA National Institute of Food and Agriculture, respectively. Peer reviewed 2023-01-23T14:24:10Z 2023-01-23T14:24:10Z 2021-05-29 artículo http://purl.org/coar/resource_type/c_6501 Remote Sensing 13(11): 2139 (2021) 2072-4292 http://hdl.handle.net/10261/287390 10.3390/rs13112139 http://dx.doi.org/10.13039/100005825 http://dx.doi.org/10.13039/501100011033 http://dx.doi.org/10.13039/501100000780 2-s2.0-85107883316 https://api.elsevier.com/content/abstract/scopus_id/85107883316 en #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-83325-C4-1-R/ES/NUEVAS HERRAMIENTAS TECNOLOGICAS, AGRONOMICAS E INFORMATICAS PARA LA GESTION DE MALAS HIERBAS/ Remote Sensing Publisher's version https://doi.org/10.3390/rs13112139 Sí open Multidisciplinary Digital Publishing Institute |
institution |
INIA ES |
collection |
DSpace |
country |
España |
countrycode |
ES |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-inia-es |
tag |
biblioteca |
region |
Europa del Sur |
libraryname |
Biblioteca del INIA España |
language |
English |
topic |
Disease diagnosis Drone RGB Multispectral Hyperspectral Thermal Machine learning Disease diagnosis Drone RGB Multispectral Hyperspectral Thermal Machine learning |
spellingShingle |
Disease diagnosis Drone RGB Multispectral Hyperspectral Thermal Machine learning Disease diagnosis Drone RGB Multispectral Hyperspectral Thermal Machine learning Castro, Ana Isabel de Shi, Yeyin Maja, Joe Mari Peña Barragán, José Manuel Uavs for vegetation monitoring: Overview and recent scientific contributions |
description |
13 Pág. |
author2 |
Agencia Estatal de Investigación (España) |
author_facet |
Agencia Estatal de Investigación (España) Castro, Ana Isabel de Shi, Yeyin Maja, Joe Mari Peña Barragán, José Manuel |
format |
artículo |
topic_facet |
Disease diagnosis Drone RGB Multispectral Hyperspectral Thermal Machine learning |
author |
Castro, Ana Isabel de Shi, Yeyin Maja, Joe Mari Peña Barragán, José Manuel |
author_sort |
Castro, Ana Isabel de |
title |
Uavs for vegetation monitoring: Overview and recent scientific contributions |
title_short |
Uavs for vegetation monitoring: Overview and recent scientific contributions |
title_full |
Uavs for vegetation monitoring: Overview and recent scientific contributions |
title_fullStr |
Uavs for vegetation monitoring: Overview and recent scientific contributions |
title_full_unstemmed |
Uavs for vegetation monitoring: Overview and recent scientific contributions |
title_sort |
uavs for vegetation monitoring: overview and recent scientific contributions |
publisher |
Multidisciplinary Digital Publishing Institute |
publishDate |
2021-05-29 |
url |
http://hdl.handle.net/10261/287390 http://dx.doi.org/10.13039/100005825 http://dx.doi.org/10.13039/501100011033 http://dx.doi.org/10.13039/501100000780 https://api.elsevier.com/content/abstract/scopus_id/85107883316 |
work_keys_str_mv |
AT castroanaisabelde uavsforvegetationmonitoringoverviewandrecentscientificcontributions AT shiyeyin uavsforvegetationmonitoringoverviewandrecentscientificcontributions AT majajoemari uavsforvegetationmonitoringoverviewandrecentscientificcontributions AT penabarraganjosemanuel uavsforvegetationmonitoringoverviewandrecentscientificcontributions |
_version_ |
1816136196865130496 |