Integrating an epidemic spread model with remote sensing for Xylella fastidiosa detection

Trabajo presentado en la 3rd European Conference on Xylella fastidiosa (Building knowledge, protecting plant health), celebrada online el 29 y 30 de abril de 2021.

Saved in:
Bibliographic Details
Main Authors: Camino, Carlos, Calderón Madrid, Rocío, Parnell, Stephen, Dierkes, H., Chemin, Y., Román Ecija, Miguel, Montes Borrego, Miguel, Landa, Blanca B., Navas Cortés, Juan Antonio, Zarco-Tejada, Pablo J., Beck, P. S. A.
Format: comunicación de congreso biblioteca
Published: 2021-04
Subjects:Hyperspectral, Thermal, Xylella fastidiosa, Nutritional, Spread mode,
Online Access:http://hdl.handle.net/10261/268191
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-ias-es-10261-268191
record_format koha
spelling dig-ias-es-10261-2681912022-04-29T02:20:05Z Integrating an epidemic spread model with remote sensing for Xylella fastidiosa detection Camino, Carlos Calderón Madrid, Rocío Parnell, Stephen Dierkes, H. Chemin, Y. Román Ecija, Miguel Montes Borrego, Miguel Landa, Blanca B. Navas Cortés, Juan Antonio Zarco-Tejada, Pablo J. Beck, P. S. A. Hyperspectral Thermal Xylella fastidiosa Nutritional Spread mode Trabajo presentado en la 3rd European Conference on Xylella fastidiosa (Building knowledge, protecting plant health), celebrada online el 29 y 30 de abril de 2021. Xylella fastidiosa (Xf) causes plant diseases that lead to massive economic losses in agricultural crops, making it one of the pathogens of greatest concern to agriculture nowadays. Detecting Xf at early stages of infection is crucial to prevent and manage outbreaks of this vector-borne bacterium. Recent remote sensing (RS) studies at different scales have shown that Xf-infected olive trees have distinct spectral features in the visible and infrared regions (VNIR). However, RS-based forecasting of Xf outbreaks requires tools that account for their spatiotemporal dynamics. Here, we show how coupling a spatial Xf-spread model with the probability of Xf-infection predicted by an RS-driven modeling algorithm based on a Support Vector Machine (RS-SVM) helps detecting the spatial Xf distribution in a landscape. To optimize such model, we investigated which RS plant traits (i.e., pigments, structural or leaf protein content) derived from high-resolution hyperspectral imagery and biophysical modelling are most responsive to Xf infection and damage. For that, we combined a field campaign in almond orchards in Alicante province (Spain) affected by Xf (n=1,426 trees), with an airborne campaign over the same area to acquire high-resolution thermal and hyperspectral images in the visible-near-infrared (400-850 nm) and short-wave infrared regions (SWIR, 950-1700 nm). We found that coupling the epidemic spread model and the RS-based model increased accuracy by around 5% (OA = 80%, kappa = 0.48 and AUC = 0.81); compared to the best performing RS-SVM model (OA = 75%; kappa = 0.50) that included as predictors leaf protein content, nitrogen indices (NIs), fluorescence and a thermal indicator, alongside pigments and structural parameters. The parameters with the greatest explanatory power of the RS model were leaf protein content together with NI (28%), followed by chlorophyll (22%), structural parameters (LAI and LIDFa), and chlorophyll indicators of photosynthetic efficiency. In the subset of almond trees where the presence of Xf was tested by qPCR (n=318 tress), the combined RS-spread model yielded the best performance (OA of 71% and kappa = 0.33). Conversely, the best-performing RS-SVM model and visual inspections produced OA and kappa values of 65% and 0.31, respectively. This study shows for the first time the potential of combining spatial epidemiological models and remote sensing to monitor Xf-disease distribution in almond trees. 2022-04-28T13:30:04Z 2022-04-28T13:30:04Z 2021-04 2022-04-28T13:30:04Z comunicación de congreso http://purl.org/coar/resource_type/c_5794 doi: 10.5281/zenodo.4884617 3rd European Conference on Xylella fastidiosa (2021) http://hdl.handle.net/10261/268191 10.5281/zenodo.4884617 Publisher's version https://doi.org/10.5281/zenodo.4884617 Sí open
institution IAS ES
collection DSpace
country España
countrycode ES
component Bibliográfico
access En linea
databasecode dig-ias-es
tag biblioteca
region Europa del Sur
libraryname Biblioteca del IAS España
topic Hyperspectral
Thermal
Xylella fastidiosa
Nutritional
Spread mode
Hyperspectral
Thermal
Xylella fastidiosa
Nutritional
Spread mode
spellingShingle Hyperspectral
Thermal
Xylella fastidiosa
Nutritional
Spread mode
Hyperspectral
Thermal
Xylella fastidiosa
Nutritional
Spread mode
Camino, Carlos
Calderón Madrid, Rocío
Parnell, Stephen
Dierkes, H.
Chemin, Y.
Román Ecija, Miguel
Montes Borrego, Miguel
Landa, Blanca B.
Navas Cortés, Juan Antonio
Zarco-Tejada, Pablo J.
Beck, P. S. A.
Integrating an epidemic spread model with remote sensing for Xylella fastidiosa detection
description Trabajo presentado en la 3rd European Conference on Xylella fastidiosa (Building knowledge, protecting plant health), celebrada online el 29 y 30 de abril de 2021.
format comunicación de congreso
topic_facet Hyperspectral
Thermal
Xylella fastidiosa
Nutritional
Spread mode
author Camino, Carlos
Calderón Madrid, Rocío
Parnell, Stephen
Dierkes, H.
Chemin, Y.
Román Ecija, Miguel
Montes Borrego, Miguel
Landa, Blanca B.
Navas Cortés, Juan Antonio
Zarco-Tejada, Pablo J.
Beck, P. S. A.
author_facet Camino, Carlos
Calderón Madrid, Rocío
Parnell, Stephen
Dierkes, H.
Chemin, Y.
Román Ecija, Miguel
Montes Borrego, Miguel
Landa, Blanca B.
Navas Cortés, Juan Antonio
Zarco-Tejada, Pablo J.
Beck, P. S. A.
author_sort Camino, Carlos
title Integrating an epidemic spread model with remote sensing for Xylella fastidiosa detection
title_short Integrating an epidemic spread model with remote sensing for Xylella fastidiosa detection
title_full Integrating an epidemic spread model with remote sensing for Xylella fastidiosa detection
title_fullStr Integrating an epidemic spread model with remote sensing for Xylella fastidiosa detection
title_full_unstemmed Integrating an epidemic spread model with remote sensing for Xylella fastidiosa detection
title_sort integrating an epidemic spread model with remote sensing for xylella fastidiosa detection
publishDate 2021-04
url http://hdl.handle.net/10261/268191
work_keys_str_mv AT caminocarlos integratinganepidemicspreadmodelwithremotesensingforxylellafastidiosadetection
AT calderonmadridrocio integratinganepidemicspreadmodelwithremotesensingforxylellafastidiosadetection
AT parnellstephen integratinganepidemicspreadmodelwithremotesensingforxylellafastidiosadetection
AT dierkesh integratinganepidemicspreadmodelwithremotesensingforxylellafastidiosadetection
AT cheminy integratinganepidemicspreadmodelwithremotesensingforxylellafastidiosadetection
AT romanecijamiguel integratinganepidemicspreadmodelwithremotesensingforxylellafastidiosadetection
AT montesborregomiguel integratinganepidemicspreadmodelwithremotesensingforxylellafastidiosadetection
AT landablancab integratinganepidemicspreadmodelwithremotesensingforxylellafastidiosadetection
AT navascortesjuanantonio integratinganepidemicspreadmodelwithremotesensingforxylellafastidiosadetection
AT zarcotejadapabloj integratinganepidemicspreadmodelwithremotesensingforxylellafastidiosadetection
AT beckpsa integratinganepidemicspreadmodelwithremotesensingforxylellafastidiosadetection
_version_ 1777663348294287360