A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence
Parametric nonlinear regression (PNR) models are used widely to fit weed seedling emergence patterns to soil microclimatic indices. However, such approximation has been questioned, mainly due to several statistical limitations. Alternatively, nonparametric approaches can be used to overcome the problems presented by PNR models. Here, we used an emergence data set of Phalaris paradoxa to compare both approaches. Mean squared error and correlation results indicated higher accuracy for the descriptive ability but similar poor performance for predictive ability of the nonparametric approach in comparison with the PNR approach. These results suggest that our nonparametric cumulative distribution function approach is a valuable alternative to the classical parametric nonlinear regression models to describe complex emergence patterns for P. paradoxa, but not to predict them.
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | artículo biblioteca |
Language: | English |
Published: |
John Wiley & Sons
2016-10
|
Subjects: | Awned canary grass, Hood canary grass, Hydrothermal time, Weed emergence model, Distribution functions, Weibull, Gompertz, Logistic, |
Online Access: | http://hdl.handle.net/10261/157496 http://dx.doi.org/10.13039/501100003329 http://dx.doi.org/10.13039/501100000780 http://dx.doi.org/10.13039/501100004837 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-ias-es-10261-157496 |
---|---|
record_format |
koha |
spelling |
dig-ias-es-10261-1574962018-02-13T10:03:39Z A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence González-Andújar, José Luis Francisco-Fernández, Mario Cao, Ricardo Reyes, Aurelio Urbano, José M. Forcella, Frank Bastida, F. Ministerio de Ciencia e Innovación (España) European Commission Ministerio de Economía y Competitividad (España) Awned canary grass Hood canary grass Hydrothermal time Weed emergence model Distribution functions Weibull Gompertz Logistic Parametric nonlinear regression (PNR) models are used widely to fit weed seedling emergence patterns to soil microclimatic indices. However, such approximation has been questioned, mainly due to several statistical limitations. Alternatively, nonparametric approaches can be used to overcome the problems presented by PNR models. Here, we used an emergence data set of Phalaris paradoxa to compare both approaches. Mean squared error and correlation results indicated higher accuracy for the descriptive ability but similar poor performance for predictive ability of the nonparametric approach in comparison with the PNR approach. These results suggest that our nonparametric cumulative distribution function approach is a valuable alternative to the classical parametric nonlinear regression models to describe complex emergence patterns for P. paradoxa, but not to predict them. This research has been partially supported by the Spanish Ministry of Science and Innovation Grant MTM2011-22392 and MTM2014-52876-R for the second, third and fourth authors and by FEDER (European Regional Development Fund) and the Spanish Ministry of Economy and Competitiveness Grant AGL2012-33736 for the first and last authors. Peer reviewed 2017-11-21T09:48:54Z 2017-11-21T09:48:54Z 2016-10 artículo http://purl.org/coar/resource_type/c_6501 Weed Research 56(5): 367-376 (2016) 0043-1737 http://hdl.handle.net/10261/157496 10.1111/wre.12216 1365-3180 http://dx.doi.org/10.13039/501100003329 http://dx.doi.org/10.13039/501100000780 http://dx.doi.org/10.13039/501100004837 en #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2014-52876-R http://doi.org/10.1111/wre.12216 Sí none John Wiley & Sons |
institution |
IAS ES |
collection |
DSpace |
country |
España |
countrycode |
ES |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-ias-es |
tag |
biblioteca |
region |
Europa del Sur |
libraryname |
Biblioteca del IAS España |
language |
English |
topic |
Awned canary grass Hood canary grass Hydrothermal time Weed emergence model Distribution functions Weibull Gompertz Logistic Awned canary grass Hood canary grass Hydrothermal time Weed emergence model Distribution functions Weibull Gompertz Logistic |
spellingShingle |
Awned canary grass Hood canary grass Hydrothermal time Weed emergence model Distribution functions Weibull Gompertz Logistic Awned canary grass Hood canary grass Hydrothermal time Weed emergence model Distribution functions Weibull Gompertz Logistic González-Andújar, José Luis Francisco-Fernández, Mario Cao, Ricardo Reyes, Aurelio Urbano, José M. Forcella, Frank Bastida, F. A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence |
description |
Parametric nonlinear regression (PNR) models are used widely to fit weed seedling emergence patterns to soil microclimatic indices. However, such approximation has been questioned, mainly due to several statistical limitations. Alternatively, nonparametric approaches can be used to overcome the problems presented by PNR models. Here, we used an emergence data set of Phalaris paradoxa to compare both approaches. Mean squared error and correlation results indicated higher accuracy for the descriptive ability but similar poor performance for predictive ability of the nonparametric approach in comparison with the PNR approach. These results suggest that our nonparametric cumulative distribution function approach is a valuable alternative to the classical parametric nonlinear regression models to describe complex emergence patterns for P. paradoxa, but not to predict them. |
author2 |
Ministerio de Ciencia e Innovación (España) |
author_facet |
Ministerio de Ciencia e Innovación (España) González-Andújar, José Luis Francisco-Fernández, Mario Cao, Ricardo Reyes, Aurelio Urbano, José M. Forcella, Frank Bastida, F. |
format |
artículo |
topic_facet |
Awned canary grass Hood canary grass Hydrothermal time Weed emergence model Distribution functions Weibull Gompertz Logistic |
author |
González-Andújar, José Luis Francisco-Fernández, Mario Cao, Ricardo Reyes, Aurelio Urbano, José M. Forcella, Frank Bastida, F. |
author_sort |
González-Andújar, José Luis |
title |
A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence |
title_short |
A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence |
title_full |
A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence |
title_fullStr |
A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence |
title_full_unstemmed |
A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence |
title_sort |
comparative study between nonlinear regression and nonparametric approaches for modelling phalaris paradoxa seedling emergence |
publisher |
John Wiley & Sons |
publishDate |
2016-10 |
url |
http://hdl.handle.net/10261/157496 http://dx.doi.org/10.13039/501100003329 http://dx.doi.org/10.13039/501100000780 http://dx.doi.org/10.13039/501100004837 |
work_keys_str_mv |
AT gonzalezandujarjoseluis acomparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence AT franciscofernandezmario acomparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence AT caoricardo acomparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence AT reyesaurelio acomparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence AT urbanojosem acomparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence AT forcellafrank acomparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence AT bastidaf acomparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence AT gonzalezandujarjoseluis comparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence AT franciscofernandezmario comparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence AT caoricardo comparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence AT reyesaurelio comparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence AT urbanojosem comparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence AT forcellafrank comparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence AT bastidaf comparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence |
_version_ |
1777663117439795200 |