A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence

Parametric nonlinear regression (PNR) models are used widely to fit weed seedling emergence patterns to soil microclimatic indices. However, such approximation has been questioned, mainly due to several statistical limitations. Alternatively, nonparametric approaches can be used to overcome the problems presented by PNR models. Here, we used an emergence data set of Phalaris paradoxa to compare both approaches. Mean squared error and correlation results indicated higher accuracy for the descriptive ability but similar poor performance for predictive ability of the nonparametric approach in comparison with the PNR approach. These results suggest that our nonparametric cumulative distribution function approach is a valuable alternative to the classical parametric nonlinear regression models to describe complex emergence patterns for P. paradoxa, but not to predict them.

Saved in:
Bibliographic Details
Main Authors: González-Andújar, José Luis, Francisco-Fernández, Mario, Cao, Ricardo, Reyes, Aurelio, Urbano, José M., Forcella, Frank, Bastida, F.
Other Authors: Ministerio de Ciencia e Innovación (España)
Format: artículo biblioteca
Language:English
Published: John Wiley & Sons 2016-10
Subjects:Awned canary grass, Hood canary grass, Hydrothermal time, Weed emergence model, Distribution functions, Weibull, Gompertz, Logistic,
Online Access:http://hdl.handle.net/10261/157496
http://dx.doi.org/10.13039/501100003329
http://dx.doi.org/10.13039/501100000780
http://dx.doi.org/10.13039/501100004837
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-ias-es-10261-157496
record_format koha
spelling dig-ias-es-10261-1574962018-02-13T10:03:39Z A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence González-Andújar, José Luis Francisco-Fernández, Mario Cao, Ricardo Reyes, Aurelio Urbano, José M. Forcella, Frank Bastida, F. Ministerio de Ciencia e Innovación (España) European Commission Ministerio de Economía y Competitividad (España) Awned canary grass Hood canary grass Hydrothermal time Weed emergence model Distribution functions Weibull Gompertz Logistic Parametric nonlinear regression (PNR) models are used widely to fit weed seedling emergence patterns to soil microclimatic indices. However, such approximation has been questioned, mainly due to several statistical limitations. Alternatively, nonparametric approaches can be used to overcome the problems presented by PNR models. Here, we used an emergence data set of Phalaris paradoxa to compare both approaches. Mean squared error and correlation results indicated higher accuracy for the descriptive ability but similar poor performance for predictive ability of the nonparametric approach in comparison with the PNR approach. These results suggest that our nonparametric cumulative distribution function approach is a valuable alternative to the classical parametric nonlinear regression models to describe complex emergence patterns for P. paradoxa, but not to predict them. This research has been partially supported by the Spanish Ministry of Science and Innovation Grant MTM2011-22392 and MTM2014-52876-R for the second, third and fourth authors and by FEDER (European Regional Development Fund) and the Spanish Ministry of Economy and Competitiveness Grant AGL2012-33736 for the first and last authors. Peer reviewed 2017-11-21T09:48:54Z 2017-11-21T09:48:54Z 2016-10 artículo http://purl.org/coar/resource_type/c_6501 Weed Research 56(5): 367-376 (2016) 0043-1737 http://hdl.handle.net/10261/157496 10.1111/wre.12216 1365-3180 http://dx.doi.org/10.13039/501100003329 http://dx.doi.org/10.13039/501100000780 http://dx.doi.org/10.13039/501100004837 en #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2014-52876-R http://doi.org/10.1111/wre.12216 Sí none John Wiley & Sons
institution IAS ES
collection DSpace
country España
countrycode ES
component Bibliográfico
access En linea
databasecode dig-ias-es
tag biblioteca
region Europa del Sur
libraryname Biblioteca del IAS España
language English
topic Awned canary grass
Hood canary grass
Hydrothermal time
Weed emergence model
Distribution functions
Weibull
Gompertz
Logistic
Awned canary grass
Hood canary grass
Hydrothermal time
Weed emergence model
Distribution functions
Weibull
Gompertz
Logistic
spellingShingle Awned canary grass
Hood canary grass
Hydrothermal time
Weed emergence model
Distribution functions
Weibull
Gompertz
Logistic
Awned canary grass
Hood canary grass
Hydrothermal time
Weed emergence model
Distribution functions
Weibull
Gompertz
Logistic
González-Andújar, José Luis
Francisco-Fernández, Mario
Cao, Ricardo
Reyes, Aurelio
Urbano, José M.
Forcella, Frank
Bastida, F.
A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence
description Parametric nonlinear regression (PNR) models are used widely to fit weed seedling emergence patterns to soil microclimatic indices. However, such approximation has been questioned, mainly due to several statistical limitations. Alternatively, nonparametric approaches can be used to overcome the problems presented by PNR models. Here, we used an emergence data set of Phalaris paradoxa to compare both approaches. Mean squared error and correlation results indicated higher accuracy for the descriptive ability but similar poor performance for predictive ability of the nonparametric approach in comparison with the PNR approach. These results suggest that our nonparametric cumulative distribution function approach is a valuable alternative to the classical parametric nonlinear regression models to describe complex emergence patterns for P. paradoxa, but not to predict them.
author2 Ministerio de Ciencia e Innovación (España)
author_facet Ministerio de Ciencia e Innovación (España)
González-Andújar, José Luis
Francisco-Fernández, Mario
Cao, Ricardo
Reyes, Aurelio
Urbano, José M.
Forcella, Frank
Bastida, F.
format artículo
topic_facet Awned canary grass
Hood canary grass
Hydrothermal time
Weed emergence model
Distribution functions
Weibull
Gompertz
Logistic
author González-Andújar, José Luis
Francisco-Fernández, Mario
Cao, Ricardo
Reyes, Aurelio
Urbano, José M.
Forcella, Frank
Bastida, F.
author_sort González-Andújar, José Luis
title A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence
title_short A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence
title_full A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence
title_fullStr A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence
title_full_unstemmed A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence
title_sort comparative study between nonlinear regression and nonparametric approaches for modelling phalaris paradoxa seedling emergence
publisher John Wiley & Sons
publishDate 2016-10
url http://hdl.handle.net/10261/157496
http://dx.doi.org/10.13039/501100003329
http://dx.doi.org/10.13039/501100000780
http://dx.doi.org/10.13039/501100004837
work_keys_str_mv AT gonzalezandujarjoseluis acomparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence
AT franciscofernandezmario acomparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence
AT caoricardo acomparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence
AT reyesaurelio acomparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence
AT urbanojosem acomparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence
AT forcellafrank acomparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence
AT bastidaf acomparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence
AT gonzalezandujarjoseluis comparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence
AT franciscofernandezmario comparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence
AT caoricardo comparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence
AT reyesaurelio comparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence
AT urbanojosem comparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence
AT forcellafrank comparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence
AT bastidaf comparativestudybetweennonlinearregressionandnonparametricapproachesformodellingphalarisparadoxaseedlingemergence
_version_ 1777663117439795200