A novel approach to combine spatial and spectral information from hyperspectral images

This article proposes a generic framework to process jointly the spatial and spectral information of hyperspectral images. First, sub-images are extracted. Then each of these sub-images follows two parallel workflows, one dedicated to the extraction of spatial features and the other dedicated to the extraction of spectral features. Finally, the extracted features are merged, producing as many scores as sub-images. Two applications are proposed, illustrating different spatial and spectral processing methods. The first one is related to the characterization of a teak wood disk, in an unsupervised way. It implements tensors of structure for the spatial branch, simple averaging for the spectral branch and multi-block principal component analysis for the fusion process. The second application is related to the early detection of apple scab on leaves. It implements co-occurrence matrices for the spatial branch, singular value decomposition for the spectral branch and multiblock partial least squares discriminant analysis for the fusion process. Both applications demonstrate the interest of the proposed method for the extraction of relevant spatial and spectral information and show how promising this new approach is for hyperspectral imaging processing.

Saved in:
Bibliographic Details
Main Authors: Gaci, Belal, Abdelghafour, Florent, Ryckewaert, Maxime, Mas-Garcia, Silvia, Louargant, Marine, Verpont, Florence, Lahoum, Yohana, Bendoula, Ryad, Chaix, Gilles, Roger, Jean-Michel
Format: article biblioteca
Language:eng
Published: Elsevier
Subjects:K50 - Technologie des produits forestiers, U30 - Méthodes de recherche, imagerie multispectrale, données spatiales, analyse spectrale, Tectona grandis, tavelure, analyse d'image, http://aims.fao.org/aos/agrovoc/c_36765, http://aims.fao.org/aos/agrovoc/c_379bbe9f, http://aims.fao.org/aos/agrovoc/c_28964, http://aims.fao.org/aos/agrovoc/c_7648, http://aims.fao.org/aos/agrovoc/c_6836, http://aims.fao.org/aos/agrovoc/c_36762,
Online Access:http://agritrop.cirad.fr/605232/
http://agritrop.cirad.fr/605232/1/2023_Gaci_HSI.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-605232
record_format koha
spelling dig-cirad-fr-6052322024-12-18T21:16:04Z http://agritrop.cirad.fr/605232/ http://agritrop.cirad.fr/605232/ A novel approach to combine spatial and spectral information from hyperspectral images. Gaci Belal, Abdelghafour Florent, Ryckewaert Maxime, Mas-Garcia Silvia, Louargant Marine, Verpont Florence, Lahoum Yohana, Bendoula Ryad, Chaix Gilles, Roger Jean-Michel. 2023. Chemometrics and Intelligent Laboratory Systems, 240:104897, 12 p.https://doi.org/10.1016/j.chemolab.2023.104897 <https://doi.org/10.1016/j.chemolab.2023.104897> A novel approach to combine spatial and spectral information from hyperspectral images Gaci, Belal Abdelghafour, Florent Ryckewaert, Maxime Mas-Garcia, Silvia Louargant, Marine Verpont, Florence Lahoum, Yohana Bendoula, Ryad Chaix, Gilles Roger, Jean-Michel eng 2023 Elsevier Chemometrics and Intelligent Laboratory Systems K50 - Technologie des produits forestiers U30 - Méthodes de recherche imagerie multispectrale données spatiales analyse spectrale Tectona grandis tavelure analyse d'image http://aims.fao.org/aos/agrovoc/c_36765 http://aims.fao.org/aos/agrovoc/c_379bbe9f http://aims.fao.org/aos/agrovoc/c_28964 http://aims.fao.org/aos/agrovoc/c_7648 http://aims.fao.org/aos/agrovoc/c_6836 http://aims.fao.org/aos/agrovoc/c_36762 This article proposes a generic framework to process jointly the spatial and spectral information of hyperspectral images. First, sub-images are extracted. Then each of these sub-images follows two parallel workflows, one dedicated to the extraction of spatial features and the other dedicated to the extraction of spectral features. Finally, the extracted features are merged, producing as many scores as sub-images. Two applications are proposed, illustrating different spatial and spectral processing methods. The first one is related to the characterization of a teak wood disk, in an unsupervised way. It implements tensors of structure for the spatial branch, simple averaging for the spectral branch and multi-block principal component analysis for the fusion process. The second application is related to the early detection of apple scab on leaves. It implements co-occurrence matrices for the spatial branch, singular value decomposition for the spectral branch and multiblock partial least squares discriminant analysis for the fusion process. Both applications demonstrate the interest of the proposed method for the extraction of relevant spatial and spectral information and show how promising this new approach is for hyperspectral imaging processing. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/605232/1/2023_Gaci_HSI.pdf text Cirad license info:eu-repo/semantics/restrictedAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1016/j.chemolab.2023.104897 10.1016/j.chemolab.2023.104897 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2023.104897 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1016/j.chemolab.2023.104897 info:eu-repo/grantAgreement///ANR-16-CONV-0004//(FRA) Institut Convergences en Agriculture Numérique/DIGITAG
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic K50 - Technologie des produits forestiers
U30 - Méthodes de recherche
imagerie multispectrale
données spatiales
analyse spectrale
Tectona grandis
tavelure
analyse d'image
http://aims.fao.org/aos/agrovoc/c_36765
http://aims.fao.org/aos/agrovoc/c_379bbe9f
http://aims.fao.org/aos/agrovoc/c_28964
http://aims.fao.org/aos/agrovoc/c_7648
http://aims.fao.org/aos/agrovoc/c_6836
http://aims.fao.org/aos/agrovoc/c_36762
K50 - Technologie des produits forestiers
U30 - Méthodes de recherche
imagerie multispectrale
données spatiales
analyse spectrale
Tectona grandis
tavelure
analyse d'image
http://aims.fao.org/aos/agrovoc/c_36765
http://aims.fao.org/aos/agrovoc/c_379bbe9f
http://aims.fao.org/aos/agrovoc/c_28964
http://aims.fao.org/aos/agrovoc/c_7648
http://aims.fao.org/aos/agrovoc/c_6836
http://aims.fao.org/aos/agrovoc/c_36762
spellingShingle K50 - Technologie des produits forestiers
U30 - Méthodes de recherche
imagerie multispectrale
données spatiales
analyse spectrale
Tectona grandis
tavelure
analyse d'image
http://aims.fao.org/aos/agrovoc/c_36765
http://aims.fao.org/aos/agrovoc/c_379bbe9f
http://aims.fao.org/aos/agrovoc/c_28964
http://aims.fao.org/aos/agrovoc/c_7648
http://aims.fao.org/aos/agrovoc/c_6836
http://aims.fao.org/aos/agrovoc/c_36762
K50 - Technologie des produits forestiers
U30 - Méthodes de recherche
imagerie multispectrale
données spatiales
analyse spectrale
Tectona grandis
tavelure
analyse d'image
http://aims.fao.org/aos/agrovoc/c_36765
http://aims.fao.org/aos/agrovoc/c_379bbe9f
http://aims.fao.org/aos/agrovoc/c_28964
http://aims.fao.org/aos/agrovoc/c_7648
http://aims.fao.org/aos/agrovoc/c_6836
http://aims.fao.org/aos/agrovoc/c_36762
Gaci, Belal
Abdelghafour, Florent
Ryckewaert, Maxime
Mas-Garcia, Silvia
Louargant, Marine
Verpont, Florence
Lahoum, Yohana
Bendoula, Ryad
Chaix, Gilles
Roger, Jean-Michel
A novel approach to combine spatial and spectral information from hyperspectral images
description This article proposes a generic framework to process jointly the spatial and spectral information of hyperspectral images. First, sub-images are extracted. Then each of these sub-images follows two parallel workflows, one dedicated to the extraction of spatial features and the other dedicated to the extraction of spectral features. Finally, the extracted features are merged, producing as many scores as sub-images. Two applications are proposed, illustrating different spatial and spectral processing methods. The first one is related to the characterization of a teak wood disk, in an unsupervised way. It implements tensors of structure for the spatial branch, simple averaging for the spectral branch and multi-block principal component analysis for the fusion process. The second application is related to the early detection of apple scab on leaves. It implements co-occurrence matrices for the spatial branch, singular value decomposition for the spectral branch and multiblock partial least squares discriminant analysis for the fusion process. Both applications demonstrate the interest of the proposed method for the extraction of relevant spatial and spectral information and show how promising this new approach is for hyperspectral imaging processing.
format article
topic_facet K50 - Technologie des produits forestiers
U30 - Méthodes de recherche
imagerie multispectrale
données spatiales
analyse spectrale
Tectona grandis
tavelure
analyse d'image
http://aims.fao.org/aos/agrovoc/c_36765
http://aims.fao.org/aos/agrovoc/c_379bbe9f
http://aims.fao.org/aos/agrovoc/c_28964
http://aims.fao.org/aos/agrovoc/c_7648
http://aims.fao.org/aos/agrovoc/c_6836
http://aims.fao.org/aos/agrovoc/c_36762
author Gaci, Belal
Abdelghafour, Florent
Ryckewaert, Maxime
Mas-Garcia, Silvia
Louargant, Marine
Verpont, Florence
Lahoum, Yohana
Bendoula, Ryad
Chaix, Gilles
Roger, Jean-Michel
author_facet Gaci, Belal
Abdelghafour, Florent
Ryckewaert, Maxime
Mas-Garcia, Silvia
Louargant, Marine
Verpont, Florence
Lahoum, Yohana
Bendoula, Ryad
Chaix, Gilles
Roger, Jean-Michel
author_sort Gaci, Belal
title A novel approach to combine spatial and spectral information from hyperspectral images
title_short A novel approach to combine spatial and spectral information from hyperspectral images
title_full A novel approach to combine spatial and spectral information from hyperspectral images
title_fullStr A novel approach to combine spatial and spectral information from hyperspectral images
title_full_unstemmed A novel approach to combine spatial and spectral information from hyperspectral images
title_sort novel approach to combine spatial and spectral information from hyperspectral images
publisher Elsevier
url http://agritrop.cirad.fr/605232/
http://agritrop.cirad.fr/605232/1/2023_Gaci_HSI.pdf
work_keys_str_mv AT gacibelal anovelapproachtocombinespatialandspectralinformationfromhyperspectralimages
AT abdelghafourflorent anovelapproachtocombinespatialandspectralinformationfromhyperspectralimages
AT ryckewaertmaxime anovelapproachtocombinespatialandspectralinformationfromhyperspectralimages
AT masgarciasilvia anovelapproachtocombinespatialandspectralinformationfromhyperspectralimages
AT louargantmarine anovelapproachtocombinespatialandspectralinformationfromhyperspectralimages
AT verpontflorence anovelapproachtocombinespatialandspectralinformationfromhyperspectralimages
AT lahoumyohana anovelapproachtocombinespatialandspectralinformationfromhyperspectralimages
AT bendoularyad anovelapproachtocombinespatialandspectralinformationfromhyperspectralimages
AT chaixgilles anovelapproachtocombinespatialandspectralinformationfromhyperspectralimages
AT rogerjeanmichel anovelapproachtocombinespatialandspectralinformationfromhyperspectralimages
AT gacibelal novelapproachtocombinespatialandspectralinformationfromhyperspectralimages
AT abdelghafourflorent novelapproachtocombinespatialandspectralinformationfromhyperspectralimages
AT ryckewaertmaxime novelapproachtocombinespatialandspectralinformationfromhyperspectralimages
AT masgarciasilvia novelapproachtocombinespatialandspectralinformationfromhyperspectralimages
AT louargantmarine novelapproachtocombinespatialandspectralinformationfromhyperspectralimages
AT verpontflorence novelapproachtocombinespatialandspectralinformationfromhyperspectralimages
AT lahoumyohana novelapproachtocombinespatialandspectralinformationfromhyperspectralimages
AT bendoularyad novelapproachtocombinespatialandspectralinformationfromhyperspectralimages
AT chaixgilles novelapproachtocombinespatialandspectralinformationfromhyperspectralimages
AT rogerjeanmichel novelapproachtocombinespatialandspectralinformationfromhyperspectralimages
_version_ 1819044878695268352