Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements

Drought is predicted to increase in the future due to climate change, bringing with it myriad impacts on ecosystems. Plants respond to drier soils by reducing stomatal conductance in order to conserve water and avoid hydraulic damage. Despite the importance of plant drought responses for the global carbon cycle and local and regional climate feedbacks, land surface models are unable to capture observed plant responses to soil moisture stress. We assessed the impact of soil moisture stress on simulated gross primary productivity (GPP) and latent energy flux (LE) in the Joint UK Land Environment Simulator (JULES) vn4.9 on seasonal and annual timescales and evaluated 10 different representations of soil moisture stress in the model. For the default configuration, GPP was more realistic in temperate biome sites than in the tropics or high-latitude (cold-region) sites, while LE was best simulated in temperate and high-latitude (cold) sites. Errors that were not due to soil moisture stress, possibly linked to phenology, contributed to model biases for GPP in tropical savanna and deciduous forest sites. We found that three alternative approaches to calculating soil moisture stress produced more realistic results than the default parameterization for most biomes and climates. All of these involved increasing the number of soil layers from 4 to 14 and the soil depth from 3.0 to 10.8 m. In addition, we found improvements when soil matric potential replaced volumetric water content in the stress equation (the “soil14_psi” experiments), when the critical threshold value for inducing soil moisture stress was reduced (“soil14_p0”), and when plants were able to access soil moisture in deeper soil layers (“soil14_dr*2”). For LE, the biases were highest in the default configuration in temperate mixed forests, with overestimation occurring during most of the year. At these sites, reducing soil moisture stress (with the new parameterizations mentioned above) increased LE and increased model biases but improved the simulated seasonal cycle and brought the monthly variance closer to the measured variance of LE. Further evaluation of the reason for the high bias in LE at many of the sites would enable improvements in both carbon and energy fluxes with new parameterizations for soil moisture stress. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES or as a general way to improve land surface carbon and water fluxes in other models. In addition, using soil matric potential presents the opportunity to include plant functional type-specific parameters to further improve modeled fluxes.

Saved in:
Bibliographic Details
Main Authors: Harper, Anna B., Williams, Karina E., McGuire, Patrick C., Duran Rojas, Maria Carolina, Hemming, Debbie, Verhoef, Anna, Huntingford, Chris, Rowland, Lucy, Marthews, Toby, Breder Eller, Cleiton, Mathison, Camilla, Nobrega, Rodolfo L. B., Gedney, Nicola, Vidale, Pier Luigi, Otu-Larbi, Fred, Pandey, Divya, Garrigues, Sebastien, Wright, Azin, Slevin, Darren, De Kauwe, Martin G., Blyth, Eleanor, Ardö, Jonas, Black, Andrew, Bonal, Damien, Buchmann, Nina, Burban, Benoit, Fuchs, Kathrin, De Grandcourt, Agnès, Mammarella, Ivan, Merbold, Lutz, Montagnani, Leonardo, Nouvellon, Yann, Restrepo-Coupe, Natalia, Wohlfahrt, Georg
Format: article biblioteca
Language:eng
Published: Copernicus GmbH
Subjects:F60 - Physiologie et biochimie végétale, H50 - Troubles divers des plantes, U10 - Informatique, mathématiques et statistiques, modélisation, modélisation environnementale, modèle de simulation, réponse de la plante, sécheresse, teneur en eau du sol, stress dû à la sécheresse, http://aims.fao.org/aos/agrovoc/c_230ab86c, http://aims.fao.org/aos/agrovoc/c_9000056, http://aims.fao.org/aos/agrovoc/c_24242, http://aims.fao.org/aos/agrovoc/c_25446, http://aims.fao.org/aos/agrovoc/c_2391, http://aims.fao.org/aos/agrovoc/c_7208, http://aims.fao.org/aos/agrovoc/c_24993,
Online Access:http://agritrop.cirad.fr/598471/
http://agritrop.cirad.fr/598471/1/598471.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-598471
record_format koha
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic F60 - Physiologie et biochimie végétale
H50 - Troubles divers des plantes
U10 - Informatique, mathématiques et statistiques
modélisation
modélisation environnementale
modèle de simulation
réponse de la plante
sécheresse
teneur en eau du sol
stress dû à la sécheresse
http://aims.fao.org/aos/agrovoc/c_230ab86c
http://aims.fao.org/aos/agrovoc/c_9000056
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_25446
http://aims.fao.org/aos/agrovoc/c_2391
http://aims.fao.org/aos/agrovoc/c_7208
http://aims.fao.org/aos/agrovoc/c_24993
F60 - Physiologie et biochimie végétale
H50 - Troubles divers des plantes
U10 - Informatique, mathématiques et statistiques
modélisation
modélisation environnementale
modèle de simulation
réponse de la plante
sécheresse
teneur en eau du sol
stress dû à la sécheresse
http://aims.fao.org/aos/agrovoc/c_230ab86c
http://aims.fao.org/aos/agrovoc/c_9000056
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_25446
http://aims.fao.org/aos/agrovoc/c_2391
http://aims.fao.org/aos/agrovoc/c_7208
http://aims.fao.org/aos/agrovoc/c_24993
spellingShingle F60 - Physiologie et biochimie végétale
H50 - Troubles divers des plantes
U10 - Informatique, mathématiques et statistiques
modélisation
modélisation environnementale
modèle de simulation
réponse de la plante
sécheresse
teneur en eau du sol
stress dû à la sécheresse
http://aims.fao.org/aos/agrovoc/c_230ab86c
http://aims.fao.org/aos/agrovoc/c_9000056
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_25446
http://aims.fao.org/aos/agrovoc/c_2391
http://aims.fao.org/aos/agrovoc/c_7208
http://aims.fao.org/aos/agrovoc/c_24993
F60 - Physiologie et biochimie végétale
H50 - Troubles divers des plantes
U10 - Informatique, mathématiques et statistiques
modélisation
modélisation environnementale
modèle de simulation
réponse de la plante
sécheresse
teneur en eau du sol
stress dû à la sécheresse
http://aims.fao.org/aos/agrovoc/c_230ab86c
http://aims.fao.org/aos/agrovoc/c_9000056
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_25446
http://aims.fao.org/aos/agrovoc/c_2391
http://aims.fao.org/aos/agrovoc/c_7208
http://aims.fao.org/aos/agrovoc/c_24993
Harper, Anna B.
Williams, Karina E.
McGuire, Patrick C.
Duran Rojas, Maria Carolina
Hemming, Debbie
Verhoef, Anna
Huntingford, Chris
Rowland, Lucy
Marthews, Toby
Breder Eller, Cleiton
Mathison, Camilla
Nobrega, Rodolfo L. B.
Gedney, Nicola
Vidale, Pier Luigi
Otu-Larbi, Fred
Pandey, Divya
Garrigues, Sebastien
Wright, Azin
Slevin, Darren
De Kauwe, Martin G.
Blyth, Eleanor
Ardö, Jonas
Black, Andrew
Bonal, Damien
Buchmann, Nina
Burban, Benoit
Fuchs, Kathrin
De Grandcourt, Agnès
Mammarella, Ivan
Merbold, Lutz
Montagnani, Leonardo
Nouvellon, Yann
Restrepo-Coupe, Natalia
Wohlfahrt, Georg
Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements
description Drought is predicted to increase in the future due to climate change, bringing with it myriad impacts on ecosystems. Plants respond to drier soils by reducing stomatal conductance in order to conserve water and avoid hydraulic damage. Despite the importance of plant drought responses for the global carbon cycle and local and regional climate feedbacks, land surface models are unable to capture observed plant responses to soil moisture stress. We assessed the impact of soil moisture stress on simulated gross primary productivity (GPP) and latent energy flux (LE) in the Joint UK Land Environment Simulator (JULES) vn4.9 on seasonal and annual timescales and evaluated 10 different representations of soil moisture stress in the model. For the default configuration, GPP was more realistic in temperate biome sites than in the tropics or high-latitude (cold-region) sites, while LE was best simulated in temperate and high-latitude (cold) sites. Errors that were not due to soil moisture stress, possibly linked to phenology, contributed to model biases for GPP in tropical savanna and deciduous forest sites. We found that three alternative approaches to calculating soil moisture stress produced more realistic results than the default parameterization for most biomes and climates. All of these involved increasing the number of soil layers from 4 to 14 and the soil depth from 3.0 to 10.8 m. In addition, we found improvements when soil matric potential replaced volumetric water content in the stress equation (the “soil14_psi” experiments), when the critical threshold value for inducing soil moisture stress was reduced (“soil14_p0”), and when plants were able to access soil moisture in deeper soil layers (“soil14_dr*2”). For LE, the biases were highest in the default configuration in temperate mixed forests, with overestimation occurring during most of the year. At these sites, reducing soil moisture stress (with the new parameterizations mentioned above) increased LE and increased model biases but improved the simulated seasonal cycle and brought the monthly variance closer to the measured variance of LE. Further evaluation of the reason for the high bias in LE at many of the sites would enable improvements in both carbon and energy fluxes with new parameterizations for soil moisture stress. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES or as a general way to improve land surface carbon and water fluxes in other models. In addition, using soil matric potential presents the opportunity to include plant functional type-specific parameters to further improve modeled fluxes.
format article
topic_facet F60 - Physiologie et biochimie végétale
H50 - Troubles divers des plantes
U10 - Informatique, mathématiques et statistiques
modélisation
modélisation environnementale
modèle de simulation
réponse de la plante
sécheresse
teneur en eau du sol
stress dû à la sécheresse
http://aims.fao.org/aos/agrovoc/c_230ab86c
http://aims.fao.org/aos/agrovoc/c_9000056
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_25446
http://aims.fao.org/aos/agrovoc/c_2391
http://aims.fao.org/aos/agrovoc/c_7208
http://aims.fao.org/aos/agrovoc/c_24993
author Harper, Anna B.
Williams, Karina E.
McGuire, Patrick C.
Duran Rojas, Maria Carolina
Hemming, Debbie
Verhoef, Anna
Huntingford, Chris
Rowland, Lucy
Marthews, Toby
Breder Eller, Cleiton
Mathison, Camilla
Nobrega, Rodolfo L. B.
Gedney, Nicola
Vidale, Pier Luigi
Otu-Larbi, Fred
Pandey, Divya
Garrigues, Sebastien
Wright, Azin
Slevin, Darren
De Kauwe, Martin G.
Blyth, Eleanor
Ardö, Jonas
Black, Andrew
Bonal, Damien
Buchmann, Nina
Burban, Benoit
Fuchs, Kathrin
De Grandcourt, Agnès
Mammarella, Ivan
Merbold, Lutz
Montagnani, Leonardo
Nouvellon, Yann
Restrepo-Coupe, Natalia
Wohlfahrt, Georg
author_facet Harper, Anna B.
Williams, Karina E.
McGuire, Patrick C.
Duran Rojas, Maria Carolina
Hemming, Debbie
Verhoef, Anna
Huntingford, Chris
Rowland, Lucy
Marthews, Toby
Breder Eller, Cleiton
Mathison, Camilla
Nobrega, Rodolfo L. B.
Gedney, Nicola
Vidale, Pier Luigi
Otu-Larbi, Fred
Pandey, Divya
Garrigues, Sebastien
Wright, Azin
Slevin, Darren
De Kauwe, Martin G.
Blyth, Eleanor
Ardö, Jonas
Black, Andrew
Bonal, Damien
Buchmann, Nina
Burban, Benoit
Fuchs, Kathrin
De Grandcourt, Agnès
Mammarella, Ivan
Merbold, Lutz
Montagnani, Leonardo
Nouvellon, Yann
Restrepo-Coupe, Natalia
Wohlfahrt, Georg
author_sort Harper, Anna B.
title Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements
title_short Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements
title_full Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements
title_fullStr Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements
title_full_unstemmed Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements
title_sort improvement of modeling plant responses to low soil moisture in julesvn4.9 and evaluation against flux tower measurements
publisher Copernicus GmbH
url http://agritrop.cirad.fr/598471/
http://agritrop.cirad.fr/598471/1/598471.pdf
work_keys_str_mv AT harperannab improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT williamskarinae improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT mcguirepatrickc improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT duranrojasmariacarolina improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT hemmingdebbie improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT verhoefanna improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT huntingfordchris improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT rowlandlucy improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT marthewstoby improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT brederellercleiton improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT mathisoncamilla improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT nobregarodolfolb improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT gedneynicola improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT vidalepierluigi improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT otularbifred improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT pandeydivya improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT garriguessebastien improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT wrightazin improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT slevindarren improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT dekauwemarting improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT blytheleanor improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT ardojonas improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT blackandrew improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT bonaldamien improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT buchmannnina improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT burbanbenoit improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT fuchskathrin improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT degrandcourtagnes improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT mammarellaivan improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT merboldlutz improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT montagnanileonardo improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT nouvellonyann improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT restrepocoupenatalia improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
AT wohlfahrtgeorg improvementofmodelingplantresponsestolowsoilmoistureinjulesvn49andevaluationagainstfluxtowermeasurements
_version_ 1819044371539951616
spelling dig-cirad-fr-5984712024-12-20T10:32:53Z http://agritrop.cirad.fr/598471/ http://agritrop.cirad.fr/598471/ Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements. Harper Anna B., Williams Karina E., McGuire Patrick C., Duran Rojas Maria Carolina, Hemming Debbie, Verhoef Anna, Huntingford Chris, Rowland Lucy, Marthews Toby, Breder Eller Cleiton, Mathison Camilla, Nobrega Rodolfo L. B., Gedney Nicola, Vidale Pier Luigi, Otu-Larbi Fred, Pandey Divya, Garrigues Sebastien, Wright Azin, Slevin Darren, De Kauwe Martin G., Blyth Eleanor, Ardö Jonas, Black Andrew, Bonal Damien, Buchmann Nina, Burban Benoit, Fuchs Kathrin, De Grandcourt Agnès, Mammarella Ivan, Merbold Lutz, Montagnani Leonardo, Nouvellon Yann, Restrepo-Coupe Natalia, Wohlfahrt Georg. 2021. GeoScientific Model Development, 14 : 3269-3294.https://doi.org/10.5194/gmd-14-3269-2021 <https://doi.org/10.5194/gmd-14-3269-2021> Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements Harper, Anna B. Williams, Karina E. McGuire, Patrick C. Duran Rojas, Maria Carolina Hemming, Debbie Verhoef, Anna Huntingford, Chris Rowland, Lucy Marthews, Toby Breder Eller, Cleiton Mathison, Camilla Nobrega, Rodolfo L. B. Gedney, Nicola Vidale, Pier Luigi Otu-Larbi, Fred Pandey, Divya Garrigues, Sebastien Wright, Azin Slevin, Darren De Kauwe, Martin G. Blyth, Eleanor Ardö, Jonas Black, Andrew Bonal, Damien Buchmann, Nina Burban, Benoit Fuchs, Kathrin De Grandcourt, Agnès Mammarella, Ivan Merbold, Lutz Montagnani, Leonardo Nouvellon, Yann Restrepo-Coupe, Natalia Wohlfahrt, Georg eng 2021 Copernicus GmbH GeoScientific Model Development F60 - Physiologie et biochimie végétale H50 - Troubles divers des plantes U10 - Informatique, mathématiques et statistiques modélisation modélisation environnementale modèle de simulation réponse de la plante sécheresse teneur en eau du sol stress dû à la sécheresse http://aims.fao.org/aos/agrovoc/c_230ab86c http://aims.fao.org/aos/agrovoc/c_9000056 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_25446 http://aims.fao.org/aos/agrovoc/c_2391 http://aims.fao.org/aos/agrovoc/c_7208 http://aims.fao.org/aos/agrovoc/c_24993 Drought is predicted to increase in the future due to climate change, bringing with it myriad impacts on ecosystems. Plants respond to drier soils by reducing stomatal conductance in order to conserve water and avoid hydraulic damage. Despite the importance of plant drought responses for the global carbon cycle and local and regional climate feedbacks, land surface models are unable to capture observed plant responses to soil moisture stress. We assessed the impact of soil moisture stress on simulated gross primary productivity (GPP) and latent energy flux (LE) in the Joint UK Land Environment Simulator (JULES) vn4.9 on seasonal and annual timescales and evaluated 10 different representations of soil moisture stress in the model. For the default configuration, GPP was more realistic in temperate biome sites than in the tropics or high-latitude (cold-region) sites, while LE was best simulated in temperate and high-latitude (cold) sites. Errors that were not due to soil moisture stress, possibly linked to phenology, contributed to model biases for GPP in tropical savanna and deciduous forest sites. We found that three alternative approaches to calculating soil moisture stress produced more realistic results than the default parameterization for most biomes and climates. All of these involved increasing the number of soil layers from 4 to 14 and the soil depth from 3.0 to 10.8 m. In addition, we found improvements when soil matric potential replaced volumetric water content in the stress equation (the “soil14_psi” experiments), when the critical threshold value for inducing soil moisture stress was reduced (“soil14_p0”), and when plants were able to access soil moisture in deeper soil layers (“soil14_dr*2”). For LE, the biases were highest in the default configuration in temperate mixed forests, with overestimation occurring during most of the year. At these sites, reducing soil moisture stress (with the new parameterizations mentioned above) increased LE and increased model biases but improved the simulated seasonal cycle and brought the monthly variance closer to the measured variance of LE. Further evaluation of the reason for the high bias in LE at many of the sites would enable improvements in both carbon and energy fluxes with new parameterizations for soil moisture stress. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES or as a general way to improve land surface carbon and water fluxes in other models. In addition, using soil matric potential presents the opportunity to include plant functional type-specific parameters to further improve modeled fluxes. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/598471/1/598471.pdf text cc_by info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ https://doi.org/10.5194/gmd-14-3269-2021 10.5194/gmd-14-3269-2021 info:eu-repo/semantics/altIdentifier/doi/10.5194/gmd-14-3269-2021 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.5194/gmd-14-3269-2021 info:eu-repo/semantics/dataset/purl/https://fluxnet.org/data/fluxnet2015-dataset/