Convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment

Convolutional Neural Networks (CNNs) are statistical models suited for learning complex visual patterns. In the context of Species Distribution Models (SDM) and in line with predictions of landscape ecology and island biogeography, CNN could grasp how local landscape structure affects prediction of species occurrence in SDMs. The prediction can thus reflect the signatures of entangled ecological processes. Although previous machine-learning based SDMs can learn complex influences of environmental predictors, they cannot acknowledge the influence of environmental structure in local landscapes (hence denoted “punctual models”). In this study, we applied CNNs to a large dataset of plant occurrences in France (GBIF), on a large taxonomical scale, to predict ranked relative probability of species (by joint learning) to any geographical position. We examined the way local environmental landscapes improve prediction by performing alternative CNN models deprived of information on landscape heterogeneity and structure (“ablation experiments”). We found that the landscape structure around location crucially contributed to improve predictive performance of CNN-SDMs. CNN models can classify the predicted distributions of many species, as other joint modelling approaches, but they further prove efficient in identifying the influence of local environmental landscapes. CNN can then represent signatures of spatially structured environmental drivers. The prediction gain is noticeable for rare species, which open promising perspectives for biodiversity monitoring and conservation strategies. Therefore, the approach is of both theoretical and practical interest. We discuss the way to test hypotheses on the patterns learnt by CNN, which should be essential for further interpretation of the ecological processes at play.

Saved in:
Bibliographic Details
Main Authors: Deneu, Benjamin, Servajean, Maximilien, Bonnet, Pierre, Botella, Christophe, Munoz, François, Joly, Alexis
Format: article biblioteca
Language:eng
Subjects:F70 - Taxonomie végétale et phytogéographie, U10 - Informatique, mathématiques et statistiques, F40 - Écologie végétale, modélisation environnementale, distribution des populations, distribution géographique, réseau de neurones, biogéographie, écologie, paysage, http://aims.fao.org/aos/agrovoc/c_9000056, http://aims.fao.org/aos/agrovoc/c_6113, http://aims.fao.org/aos/agrovoc/c_5083, http://aims.fao.org/aos/agrovoc/c_37467, http://aims.fao.org/aos/agrovoc/c_915, http://aims.fao.org/aos/agrovoc/c_2467, http://aims.fao.org/aos/agrovoc/c_4185, http://aims.fao.org/aos/agrovoc/c_3081,
Online Access:http://agritrop.cirad.fr/598364/
http://agritrop.cirad.fr/598364/1/journal.pcbi.1008856.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-598364
record_format koha
spelling dig-cirad-fr-5983642024-04-24T11:44:25Z http://agritrop.cirad.fr/598364/ http://agritrop.cirad.fr/598364/ Convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment. Deneu Benjamin, Servajean Maximilien, Bonnet Pierre, Botella Christophe, Munoz François, Joly Alexis. 2021. PLoS Computational Biology, 17 (4):e1008856, 21 p.https://doi.org/10.1371/journal.pcbi.1008856 <https://doi.org/10.1371/journal.pcbi.1008856> Convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment Deneu, Benjamin Servajean, Maximilien Bonnet, Pierre Botella, Christophe Munoz, François Joly, Alexis eng 2021 PLoS Computational Biology F70 - Taxonomie végétale et phytogéographie U10 - Informatique, mathématiques et statistiques F40 - Écologie végétale modélisation environnementale distribution des populations distribution géographique réseau de neurones biogéographie écologie paysage http://aims.fao.org/aos/agrovoc/c_9000056 http://aims.fao.org/aos/agrovoc/c_6113 http://aims.fao.org/aos/agrovoc/c_5083 http://aims.fao.org/aos/agrovoc/c_37467 http://aims.fao.org/aos/agrovoc/c_915 http://aims.fao.org/aos/agrovoc/c_2467 http://aims.fao.org/aos/agrovoc/c_4185 France http://aims.fao.org/aos/agrovoc/c_3081 Convolutional Neural Networks (CNNs) are statistical models suited for learning complex visual patterns. In the context of Species Distribution Models (SDM) and in line with predictions of landscape ecology and island biogeography, CNN could grasp how local landscape structure affects prediction of species occurrence in SDMs. The prediction can thus reflect the signatures of entangled ecological processes. Although previous machine-learning based SDMs can learn complex influences of environmental predictors, they cannot acknowledge the influence of environmental structure in local landscapes (hence denoted “punctual models”). In this study, we applied CNNs to a large dataset of plant occurrences in France (GBIF), on a large taxonomical scale, to predict ranked relative probability of species (by joint learning) to any geographical position. We examined the way local environmental landscapes improve prediction by performing alternative CNN models deprived of information on landscape heterogeneity and structure (“ablation experiments”). We found that the landscape structure around location crucially contributed to improve predictive performance of CNN-SDMs. CNN models can classify the predicted distributions of many species, as other joint modelling approaches, but they further prove efficient in identifying the influence of local environmental landscapes. CNN can then represent signatures of spatially structured environmental drivers. The prediction gain is noticeable for rare species, which open promising perspectives for biodiversity monitoring and conservation strategies. Therefore, the approach is of both theoretical and practical interest. We discuss the way to test hypotheses on the patterns learnt by CNN, which should be essential for further interpretation of the ecological processes at play. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/598364/1/journal.pcbi.1008856.pdf text cc_by info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ https://doi.org/10.1371/journal.pcbi.1008856 10.1371/journal.pcbi.1008856 info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pcbi.1008856 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1371/journal.pcbi.1008856 info:eu-repo/semantics/reference/purl/https://gitlab.inria.fr/bdeneu/cnn-sdm
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic F70 - Taxonomie végétale et phytogéographie
U10 - Informatique, mathématiques et statistiques
F40 - Écologie végétale
modélisation environnementale
distribution des populations
distribution géographique
réseau de neurones
biogéographie
écologie
paysage
http://aims.fao.org/aos/agrovoc/c_9000056
http://aims.fao.org/aos/agrovoc/c_6113
http://aims.fao.org/aos/agrovoc/c_5083
http://aims.fao.org/aos/agrovoc/c_37467
http://aims.fao.org/aos/agrovoc/c_915
http://aims.fao.org/aos/agrovoc/c_2467
http://aims.fao.org/aos/agrovoc/c_4185
http://aims.fao.org/aos/agrovoc/c_3081
F70 - Taxonomie végétale et phytogéographie
U10 - Informatique, mathématiques et statistiques
F40 - Écologie végétale
modélisation environnementale
distribution des populations
distribution géographique
réseau de neurones
biogéographie
écologie
paysage
http://aims.fao.org/aos/agrovoc/c_9000056
http://aims.fao.org/aos/agrovoc/c_6113
http://aims.fao.org/aos/agrovoc/c_5083
http://aims.fao.org/aos/agrovoc/c_37467
http://aims.fao.org/aos/agrovoc/c_915
http://aims.fao.org/aos/agrovoc/c_2467
http://aims.fao.org/aos/agrovoc/c_4185
http://aims.fao.org/aos/agrovoc/c_3081
spellingShingle F70 - Taxonomie végétale et phytogéographie
U10 - Informatique, mathématiques et statistiques
F40 - Écologie végétale
modélisation environnementale
distribution des populations
distribution géographique
réseau de neurones
biogéographie
écologie
paysage
http://aims.fao.org/aos/agrovoc/c_9000056
http://aims.fao.org/aos/agrovoc/c_6113
http://aims.fao.org/aos/agrovoc/c_5083
http://aims.fao.org/aos/agrovoc/c_37467
http://aims.fao.org/aos/agrovoc/c_915
http://aims.fao.org/aos/agrovoc/c_2467
http://aims.fao.org/aos/agrovoc/c_4185
http://aims.fao.org/aos/agrovoc/c_3081
F70 - Taxonomie végétale et phytogéographie
U10 - Informatique, mathématiques et statistiques
F40 - Écologie végétale
modélisation environnementale
distribution des populations
distribution géographique
réseau de neurones
biogéographie
écologie
paysage
http://aims.fao.org/aos/agrovoc/c_9000056
http://aims.fao.org/aos/agrovoc/c_6113
http://aims.fao.org/aos/agrovoc/c_5083
http://aims.fao.org/aos/agrovoc/c_37467
http://aims.fao.org/aos/agrovoc/c_915
http://aims.fao.org/aos/agrovoc/c_2467
http://aims.fao.org/aos/agrovoc/c_4185
http://aims.fao.org/aos/agrovoc/c_3081
Deneu, Benjamin
Servajean, Maximilien
Bonnet, Pierre
Botella, Christophe
Munoz, François
Joly, Alexis
Convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment
description Convolutional Neural Networks (CNNs) are statistical models suited for learning complex visual patterns. In the context of Species Distribution Models (SDM) and in line with predictions of landscape ecology and island biogeography, CNN could grasp how local landscape structure affects prediction of species occurrence in SDMs. The prediction can thus reflect the signatures of entangled ecological processes. Although previous machine-learning based SDMs can learn complex influences of environmental predictors, they cannot acknowledge the influence of environmental structure in local landscapes (hence denoted “punctual models”). In this study, we applied CNNs to a large dataset of plant occurrences in France (GBIF), on a large taxonomical scale, to predict ranked relative probability of species (by joint learning) to any geographical position. We examined the way local environmental landscapes improve prediction by performing alternative CNN models deprived of information on landscape heterogeneity and structure (“ablation experiments”). We found that the landscape structure around location crucially contributed to improve predictive performance of CNN-SDMs. CNN models can classify the predicted distributions of many species, as other joint modelling approaches, but they further prove efficient in identifying the influence of local environmental landscapes. CNN can then represent signatures of spatially structured environmental drivers. The prediction gain is noticeable for rare species, which open promising perspectives for biodiversity monitoring and conservation strategies. Therefore, the approach is of both theoretical and practical interest. We discuss the way to test hypotheses on the patterns learnt by CNN, which should be essential for further interpretation of the ecological processes at play.
format article
topic_facet F70 - Taxonomie végétale et phytogéographie
U10 - Informatique, mathématiques et statistiques
F40 - Écologie végétale
modélisation environnementale
distribution des populations
distribution géographique
réseau de neurones
biogéographie
écologie
paysage
http://aims.fao.org/aos/agrovoc/c_9000056
http://aims.fao.org/aos/agrovoc/c_6113
http://aims.fao.org/aos/agrovoc/c_5083
http://aims.fao.org/aos/agrovoc/c_37467
http://aims.fao.org/aos/agrovoc/c_915
http://aims.fao.org/aos/agrovoc/c_2467
http://aims.fao.org/aos/agrovoc/c_4185
http://aims.fao.org/aos/agrovoc/c_3081
author Deneu, Benjamin
Servajean, Maximilien
Bonnet, Pierre
Botella, Christophe
Munoz, François
Joly, Alexis
author_facet Deneu, Benjamin
Servajean, Maximilien
Bonnet, Pierre
Botella, Christophe
Munoz, François
Joly, Alexis
author_sort Deneu, Benjamin
title Convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment
title_short Convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment
title_full Convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment
title_fullStr Convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment
title_full_unstemmed Convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment
title_sort convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment
url http://agritrop.cirad.fr/598364/
http://agritrop.cirad.fr/598364/1/journal.pcbi.1008856.pdf
work_keys_str_mv AT deneubenjamin convolutionalneuralnetworksimprovespeciesdistributionmodellingbycapturingthespatialstructureoftheenvironment
AT servajeanmaximilien convolutionalneuralnetworksimprovespeciesdistributionmodellingbycapturingthespatialstructureoftheenvironment
AT bonnetpierre convolutionalneuralnetworksimprovespeciesdistributionmodellingbycapturingthespatialstructureoftheenvironment
AT botellachristophe convolutionalneuralnetworksimprovespeciesdistributionmodellingbycapturingthespatialstructureoftheenvironment
AT munozfrancois convolutionalneuralnetworksimprovespeciesdistributionmodellingbycapturingthespatialstructureoftheenvironment
AT jolyalexis convolutionalneuralnetworksimprovespeciesdistributionmodellingbycapturingthespatialstructureoftheenvironment
_version_ 1798165063619575808