Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France

Bioenergy systems are promoted in an effort to mitigate climate change, and policies are defined accordingly to be implemented in the coming decades. Life Cycle Assessment (LCA) is used to assess the environmental performance of bioenergy systems, yet subject to the limitations of static approaches. In classical LCA, no temporal differentiation is undertaken: all inventoried instant to long-term greenhouse gases emissions (GHG) are aggregated and characterised in the same way, over a fixed time horizon, by means of fixed characterisation factors. Positive and negative impact contributions of dynamic biogenic carbon (Cbio) sum up to zero, yielding the same result as carbon neutral estimates. Climate mitigation results are biased without the temporal consideration of these flows. The purpose of the study is to highlight the time-sensitive potential climatic consequences of policy-driven transport strategies for metropolitan France, in the specific context of the dynamic LCA framework and climate change mitigation. We therefore propose a dynamic approach coupling a partial-equilibrium model (PEM) with dynamic Cbio models. The PEM analyses in detail the techno-economic performance of the metropolitan French energy-transport sector. It explores prospective optimization options (supply-demand equilibrium) of emerging commodity and energy process pathways in response to a policy in question. The Cbio model generates dynamic inventories of the Cbio embedded in the primary renewable biomass outputs of the PEM. It captures the dynamic Cbio exchange flows between the atmosphere and the technosphere over time: negative emissions from fixation (sequestration) and positive emissions from release (e.g. combustion or decay). A dynamic impact method is applied to evaluate the mitigation effects of Cbio from forest wood residues by comparing the climate change impacts from complete carbon (fossil + biogenic) with carbon neutral inventories across scenarios. Two sets of results are computed concerning the overall transport (all emissions) and bioethanol (wood-to-fuel emissions) systems. The mitigation effect from long-term historic sequestration allocated to bioethanol (462%) is significantly larger than for transport (3%), expressed as the difference with carbon neutral estimates. The fossil-sourced emissions from bioethanol production represents only 5.4%. In contrast, a comparison with an alternative reference scenario involving wood decay demonstrated higher impacts (i.e. an increase of 316%) than carbon neutral estimates. The representation of the actual climatic consequences depends on the chosen fixed end-year of the dynamic impact assessment. Moreover, the mitigation effect is proven sensitive to the rotation length of forestry wood: the shorter the length the lower the mitigation from using renewable forest resources. Other energy-policy scenarios, Cbio modelling approaches and consequences of indirect effects should be further studied and contrasted.

Saved in:
Bibliographic Details
Main Authors: Albers, Ariane Christine, Collet, Pierre, Lorne, Daphné, Benoist, Anthony, Helias, Arnaud
Format: article biblioteca
Language:eng
Subjects:P40 - Météorologie et climatologie, P06 - Sources d'énergie renouvelable, P33 - Chimie et physique du sol, U10 - Informatique, mathématiques et statistiques, changement climatique, réduction des émissions, transport, bioénergie, gestion des ressources naturelles, séquestration du carbone, modèle mathématique, http://aims.fao.org/aos/agrovoc/c_1666, http://aims.fao.org/aos/agrovoc/c_331597, http://aims.fao.org/aos/agrovoc/c_7874, http://aims.fao.org/aos/agrovoc/c_16526, http://aims.fao.org/aos/agrovoc/c_9000115, http://aims.fao.org/aos/agrovoc/c_331583, http://aims.fao.org/aos/agrovoc/c_24199, http://aims.fao.org/aos/agrovoc/c_3081,
Online Access:http://agritrop.cirad.fr/591419/
http://agritrop.cirad.fr/591419/1/Albers%202019%20-%20Coupling%20TIMES-MIRET%20and%20dynamic%20biogenic%20C.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-591419
record_format koha
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic P40 - Météorologie et climatologie
P06 - Sources d'énergie renouvelable
P33 - Chimie et physique du sol
U10 - Informatique, mathématiques et statistiques
changement climatique
réduction des émissions
transport
bioénergie
gestion des ressources naturelles
séquestration du carbone
modèle mathématique
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_331597
http://aims.fao.org/aos/agrovoc/c_7874
http://aims.fao.org/aos/agrovoc/c_16526
http://aims.fao.org/aos/agrovoc/c_9000115
http://aims.fao.org/aos/agrovoc/c_331583
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_3081
P40 - Météorologie et climatologie
P06 - Sources d'énergie renouvelable
P33 - Chimie et physique du sol
U10 - Informatique, mathématiques et statistiques
changement climatique
réduction des émissions
transport
bioénergie
gestion des ressources naturelles
séquestration du carbone
modèle mathématique
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_331597
http://aims.fao.org/aos/agrovoc/c_7874
http://aims.fao.org/aos/agrovoc/c_16526
http://aims.fao.org/aos/agrovoc/c_9000115
http://aims.fao.org/aos/agrovoc/c_331583
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_3081
spellingShingle P40 - Météorologie et climatologie
P06 - Sources d'énergie renouvelable
P33 - Chimie et physique du sol
U10 - Informatique, mathématiques et statistiques
changement climatique
réduction des émissions
transport
bioénergie
gestion des ressources naturelles
séquestration du carbone
modèle mathématique
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_331597
http://aims.fao.org/aos/agrovoc/c_7874
http://aims.fao.org/aos/agrovoc/c_16526
http://aims.fao.org/aos/agrovoc/c_9000115
http://aims.fao.org/aos/agrovoc/c_331583
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_3081
P40 - Météorologie et climatologie
P06 - Sources d'énergie renouvelable
P33 - Chimie et physique du sol
U10 - Informatique, mathématiques et statistiques
changement climatique
réduction des émissions
transport
bioénergie
gestion des ressources naturelles
séquestration du carbone
modèle mathématique
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_331597
http://aims.fao.org/aos/agrovoc/c_7874
http://aims.fao.org/aos/agrovoc/c_16526
http://aims.fao.org/aos/agrovoc/c_9000115
http://aims.fao.org/aos/agrovoc/c_331583
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_3081
Albers, Ariane Christine
Collet, Pierre
Lorne, Daphné
Benoist, Anthony
Helias, Arnaud
Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France
description Bioenergy systems are promoted in an effort to mitigate climate change, and policies are defined accordingly to be implemented in the coming decades. Life Cycle Assessment (LCA) is used to assess the environmental performance of bioenergy systems, yet subject to the limitations of static approaches. In classical LCA, no temporal differentiation is undertaken: all inventoried instant to long-term greenhouse gases emissions (GHG) are aggregated and characterised in the same way, over a fixed time horizon, by means of fixed characterisation factors. Positive and negative impact contributions of dynamic biogenic carbon (Cbio) sum up to zero, yielding the same result as carbon neutral estimates. Climate mitigation results are biased without the temporal consideration of these flows. The purpose of the study is to highlight the time-sensitive potential climatic consequences of policy-driven transport strategies for metropolitan France, in the specific context of the dynamic LCA framework and climate change mitigation. We therefore propose a dynamic approach coupling a partial-equilibrium model (PEM) with dynamic Cbio models. The PEM analyses in detail the techno-economic performance of the metropolitan French energy-transport sector. It explores prospective optimization options (supply-demand equilibrium) of emerging commodity and energy process pathways in response to a policy in question. The Cbio model generates dynamic inventories of the Cbio embedded in the primary renewable biomass outputs of the PEM. It captures the dynamic Cbio exchange flows between the atmosphere and the technosphere over time: negative emissions from fixation (sequestration) and positive emissions from release (e.g. combustion or decay). A dynamic impact method is applied to evaluate the mitigation effects of Cbio from forest wood residues by comparing the climate change impacts from complete carbon (fossil + biogenic) with carbon neutral inventories across scenarios. Two sets of results are computed concerning the overall transport (all emissions) and bioethanol (wood-to-fuel emissions) systems. The mitigation effect from long-term historic sequestration allocated to bioethanol (462%) is significantly larger than for transport (3%), expressed as the difference with carbon neutral estimates. The fossil-sourced emissions from bioethanol production represents only 5.4%. In contrast, a comparison with an alternative reference scenario involving wood decay demonstrated higher impacts (i.e. an increase of 316%) than carbon neutral estimates. The representation of the actual climatic consequences depends on the chosen fixed end-year of the dynamic impact assessment. Moreover, the mitigation effect is proven sensitive to the rotation length of forestry wood: the shorter the length the lower the mitigation from using renewable forest resources. Other energy-policy scenarios, Cbio modelling approaches and consequences of indirect effects should be further studied and contrasted.
format article
topic_facet P40 - Météorologie et climatologie
P06 - Sources d'énergie renouvelable
P33 - Chimie et physique du sol
U10 - Informatique, mathématiques et statistiques
changement climatique
réduction des émissions
transport
bioénergie
gestion des ressources naturelles
séquestration du carbone
modèle mathématique
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_331597
http://aims.fao.org/aos/agrovoc/c_7874
http://aims.fao.org/aos/agrovoc/c_16526
http://aims.fao.org/aos/agrovoc/c_9000115
http://aims.fao.org/aos/agrovoc/c_331583
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_3081
author Albers, Ariane Christine
Collet, Pierre
Lorne, Daphné
Benoist, Anthony
Helias, Arnaud
author_facet Albers, Ariane Christine
Collet, Pierre
Lorne, Daphné
Benoist, Anthony
Helias, Arnaud
author_sort Albers, Ariane Christine
title Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France
title_short Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France
title_full Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France
title_fullStr Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France
title_full_unstemmed Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France
title_sort coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in france
url http://agritrop.cirad.fr/591419/
http://agritrop.cirad.fr/591419/1/Albers%202019%20-%20Coupling%20TIMES-MIRET%20and%20dynamic%20biogenic%20C.pdf
work_keys_str_mv AT albersarianechristine couplingpartialequilibriumanddynamicbiogeniccarbonmodelstoassessfuturetransportscenariosinfrance
AT colletpierre couplingpartialequilibriumanddynamicbiogeniccarbonmodelstoassessfuturetransportscenariosinfrance
AT lornedaphne couplingpartialequilibriumanddynamicbiogeniccarbonmodelstoassessfuturetransportscenariosinfrance
AT benoistanthony couplingpartialequilibriumanddynamicbiogeniccarbonmodelstoassessfuturetransportscenariosinfrance
AT heliasarnaud couplingpartialequilibriumanddynamicbiogeniccarbonmodelstoassessfuturetransportscenariosinfrance
_version_ 1792499664541450240
spelling dig-cirad-fr-5914192024-01-29T01:41:48Z http://agritrop.cirad.fr/591419/ http://agritrop.cirad.fr/591419/ Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France. Albers Ariane Christine, Collet Pierre, Lorne Daphné, Benoist Anthony, Helias Arnaud. 2019. Applied Energy, 239 : 316-330.https://doi.org/10.1016/j.apenergy.2019.01.186 <https://doi.org/10.1016/j.apenergy.2019.01.186> Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France Albers, Ariane Christine Collet, Pierre Lorne, Daphné Benoist, Anthony Helias, Arnaud eng 2019 Applied Energy P40 - Météorologie et climatologie P06 - Sources d'énergie renouvelable P33 - Chimie et physique du sol U10 - Informatique, mathématiques et statistiques changement climatique réduction des émissions transport bioénergie gestion des ressources naturelles séquestration du carbone modèle mathématique http://aims.fao.org/aos/agrovoc/c_1666 http://aims.fao.org/aos/agrovoc/c_331597 http://aims.fao.org/aos/agrovoc/c_7874 http://aims.fao.org/aos/agrovoc/c_16526 http://aims.fao.org/aos/agrovoc/c_9000115 http://aims.fao.org/aos/agrovoc/c_331583 http://aims.fao.org/aos/agrovoc/c_24199 France http://aims.fao.org/aos/agrovoc/c_3081 Bioenergy systems are promoted in an effort to mitigate climate change, and policies are defined accordingly to be implemented in the coming decades. Life Cycle Assessment (LCA) is used to assess the environmental performance of bioenergy systems, yet subject to the limitations of static approaches. In classical LCA, no temporal differentiation is undertaken: all inventoried instant to long-term greenhouse gases emissions (GHG) are aggregated and characterised in the same way, over a fixed time horizon, by means of fixed characterisation factors. Positive and negative impact contributions of dynamic biogenic carbon (Cbio) sum up to zero, yielding the same result as carbon neutral estimates. Climate mitigation results are biased without the temporal consideration of these flows. The purpose of the study is to highlight the time-sensitive potential climatic consequences of policy-driven transport strategies for metropolitan France, in the specific context of the dynamic LCA framework and climate change mitigation. We therefore propose a dynamic approach coupling a partial-equilibrium model (PEM) with dynamic Cbio models. The PEM analyses in detail the techno-economic performance of the metropolitan French energy-transport sector. It explores prospective optimization options (supply-demand equilibrium) of emerging commodity and energy process pathways in response to a policy in question. The Cbio model generates dynamic inventories of the Cbio embedded in the primary renewable biomass outputs of the PEM. It captures the dynamic Cbio exchange flows between the atmosphere and the technosphere over time: negative emissions from fixation (sequestration) and positive emissions from release (e.g. combustion or decay). A dynamic impact method is applied to evaluate the mitigation effects of Cbio from forest wood residues by comparing the climate change impacts from complete carbon (fossil + biogenic) with carbon neutral inventories across scenarios. Two sets of results are computed concerning the overall transport (all emissions) and bioethanol (wood-to-fuel emissions) systems. The mitigation effect from long-term historic sequestration allocated to bioethanol (462%) is significantly larger than for transport (3%), expressed as the difference with carbon neutral estimates. The fossil-sourced emissions from bioethanol production represents only 5.4%. In contrast, a comparison with an alternative reference scenario involving wood decay demonstrated higher impacts (i.e. an increase of 316%) than carbon neutral estimates. The representation of the actual climatic consequences depends on the chosen fixed end-year of the dynamic impact assessment. Moreover, the mitigation effect is proven sensitive to the rotation length of forestry wood: the shorter the length the lower the mitigation from using renewable forest resources. Other energy-policy scenarios, Cbio modelling approaches and consequences of indirect effects should be further studied and contrasted. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/591419/1/Albers%202019%20-%20Coupling%20TIMES-MIRET%20and%20dynamic%20biogenic%20C.pdf text Cirad license info:eu-repo/semantics/restrictedAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1016/j.apenergy.2019.01.186 10.1016/j.apenergy.2019.01.186 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apenergy.2019.01.186 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1016/j.apenergy.2019.01.186