Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures
A large body of literature has recently recognized the role of microclimates in controlling the physiology and ecology of species, yet the relevance of fine-scale climatic data for modeling species performance and distribution remains a matter of debate. Using a 6-year monitoring of three potato moth species, major crop pests in the tropical Andes, we asked whether the spatiotemporal resolution of temperature data affect the predictions of models of moth performance and distribution. For this, we used three different climatic data sets: (i) the WorldClim dataset (global dataset), (ii) air temperature recorded using data loggers (weather station dataset), and (iii) air crop canopy temperature (microclimate dataset). We developed a statistical procedure to calibrate all datasets to monthly and yearly variation in temperatures, while keeping both spatial and temporal variances (air monthly temperature at 1 km² for the WorldClim dataset, air hourly temperature for the weather station, and air minute temperature over 250 m radius disks for the microclimate dataset). Then, we computed pest performances based on these three datasets. Results for temperature ranging from 9 to 11°C revealed discrepancies in the simulation outputs in both survival and development rates depending on the spatiotemporal resolution of the temperature dataset. Temperature and simulated pest performances were then combined into multiple linear regression models to compare predicted vs. field data. We used an additional set of study sites to test the ability of the results of our model to be extrapolated over larger scales. Results showed that the model implemented with microclimatic data best predicted observed pest abundances for our study sites, but was less accurate than the global dataset model when performed at larger scales. Our simulations therefore stress the importance to consider different temperature datasets depending on the issue to be solved in order to accurately predict species abundances. In conclusion, keeping in mind that the mismatch between the size of organisms and the scale at which climate data are collected and modeled remains a key issue, temperature dataset selection should be balanced by the desired output spatiotemporal scale for better predicting pest dynamics and developing efficient pest management strategies.
Main Authors: | , , |
---|---|
Format: | article biblioteca |
Language: | eng |
Subjects: | L20 - Écologie animale, P40 - Météorologie et climatologie, U10 - Informatique, mathématiques et statistiques, température, microclimat, lutte anti-insecte, modèle de simulation, modélisation des cultures, http://aims.fao.org/aos/agrovoc/c_7657, http://aims.fao.org/aos/agrovoc/c_4802, http://aims.fao.org/aos/agrovoc/c_3885, http://aims.fao.org/aos/agrovoc/c_24242, http://aims.fao.org/aos/agrovoc/c_9000024, http://aims.fao.org/aos/agrovoc/c_2485, http://aims.fao.org/aos/agrovoc/c_401, |
Online Access: | http://agritrop.cirad.fr/580880/ http://agritrop.cirad.fr/580880/1/Rebaudo_et_al_2016_FIP.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-cirad-fr-580880 |
---|---|
record_format |
koha |
spelling |
dig-cirad-fr-5808802024-01-29T05:35:18Z http://agritrop.cirad.fr/580880/ http://agritrop.cirad.fr/580880/ Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures. Rebaudo François, Faye Emile, Dangles Olivier. 2016. Frontiers in Physiology, 7 (139), 12 p.https://doi.org/10.3389/fphys.2016.00139 <https://doi.org/10.3389/fphys.2016.00139> Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures Rebaudo, François Faye, Emile Dangles, Olivier eng 2016 Frontiers in Physiology L20 - Écologie animale P40 - Météorologie et climatologie U10 - Informatique, mathématiques et statistiques température microclimat lutte anti-insecte modèle de simulation modélisation des cultures http://aims.fao.org/aos/agrovoc/c_7657 http://aims.fao.org/aos/agrovoc/c_4802 http://aims.fao.org/aos/agrovoc/c_3885 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_9000024 Équateur région andine http://aims.fao.org/aos/agrovoc/c_2485 http://aims.fao.org/aos/agrovoc/c_401 A large body of literature has recently recognized the role of microclimates in controlling the physiology and ecology of species, yet the relevance of fine-scale climatic data for modeling species performance and distribution remains a matter of debate. Using a 6-year monitoring of three potato moth species, major crop pests in the tropical Andes, we asked whether the spatiotemporal resolution of temperature data affect the predictions of models of moth performance and distribution. For this, we used three different climatic data sets: (i) the WorldClim dataset (global dataset), (ii) air temperature recorded using data loggers (weather station dataset), and (iii) air crop canopy temperature (microclimate dataset). We developed a statistical procedure to calibrate all datasets to monthly and yearly variation in temperatures, while keeping both spatial and temporal variances (air monthly temperature at 1 km² for the WorldClim dataset, air hourly temperature for the weather station, and air minute temperature over 250 m radius disks for the microclimate dataset). Then, we computed pest performances based on these three datasets. Results for temperature ranging from 9 to 11°C revealed discrepancies in the simulation outputs in both survival and development rates depending on the spatiotemporal resolution of the temperature dataset. Temperature and simulated pest performances were then combined into multiple linear regression models to compare predicted vs. field data. We used an additional set of study sites to test the ability of the results of our model to be extrapolated over larger scales. Results showed that the model implemented with microclimatic data best predicted observed pest abundances for our study sites, but was less accurate than the global dataset model when performed at larger scales. Our simulations therefore stress the importance to consider different temperature datasets depending on the issue to be solved in order to accurately predict species abundances. In conclusion, keeping in mind that the mismatch between the size of organisms and the scale at which climate data are collected and modeled remains a key issue, temperature dataset selection should be balanced by the desired output spatiotemporal scale for better predicting pest dynamics and developing efficient pest management strategies. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/580880/1/Rebaudo_et_al_2016_FIP.pdf text cc_0 info:eu-repo/semantics/openAccess https://creativecommons.org/publicdomain/zero/1.0/ https://doi.org/10.3389/fphys.2016.00139 10.3389/fphys.2016.00139 info:eu-repo/semantics/altIdentifier/doi/10.3389/fphys.2016.00139 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.3389/fphys.2016.00139 |
institution |
CIRAD FR |
collection |
DSpace |
country |
Francia |
countrycode |
FR |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-cirad-fr |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
Biblioteca del CIRAD Francia |
language |
eng |
topic |
L20 - Écologie animale P40 - Météorologie et climatologie U10 - Informatique, mathématiques et statistiques température microclimat lutte anti-insecte modèle de simulation modélisation des cultures http://aims.fao.org/aos/agrovoc/c_7657 http://aims.fao.org/aos/agrovoc/c_4802 http://aims.fao.org/aos/agrovoc/c_3885 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_9000024 http://aims.fao.org/aos/agrovoc/c_2485 http://aims.fao.org/aos/agrovoc/c_401 L20 - Écologie animale P40 - Météorologie et climatologie U10 - Informatique, mathématiques et statistiques température microclimat lutte anti-insecte modèle de simulation modélisation des cultures http://aims.fao.org/aos/agrovoc/c_7657 http://aims.fao.org/aos/agrovoc/c_4802 http://aims.fao.org/aos/agrovoc/c_3885 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_9000024 http://aims.fao.org/aos/agrovoc/c_2485 http://aims.fao.org/aos/agrovoc/c_401 |
spellingShingle |
L20 - Écologie animale P40 - Météorologie et climatologie U10 - Informatique, mathématiques et statistiques température microclimat lutte anti-insecte modèle de simulation modélisation des cultures http://aims.fao.org/aos/agrovoc/c_7657 http://aims.fao.org/aos/agrovoc/c_4802 http://aims.fao.org/aos/agrovoc/c_3885 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_9000024 http://aims.fao.org/aos/agrovoc/c_2485 http://aims.fao.org/aos/agrovoc/c_401 L20 - Écologie animale P40 - Météorologie et climatologie U10 - Informatique, mathématiques et statistiques température microclimat lutte anti-insecte modèle de simulation modélisation des cultures http://aims.fao.org/aos/agrovoc/c_7657 http://aims.fao.org/aos/agrovoc/c_4802 http://aims.fao.org/aos/agrovoc/c_3885 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_9000024 http://aims.fao.org/aos/agrovoc/c_2485 http://aims.fao.org/aos/agrovoc/c_401 Rebaudo, François Faye, Emile Dangles, Olivier Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures |
description |
A large body of literature has recently recognized the role of microclimates in controlling the physiology and ecology of species, yet the relevance of fine-scale climatic data for modeling species performance and distribution remains a matter of debate. Using a 6-year monitoring of three potato moth species, major crop pests in the tropical Andes, we asked whether the spatiotemporal resolution of temperature data affect the predictions of models of moth performance and distribution. For this, we used three different climatic data sets: (i) the WorldClim dataset (global dataset), (ii) air temperature recorded using data loggers (weather station dataset), and (iii) air crop canopy temperature (microclimate dataset). We developed a statistical procedure to calibrate all datasets to monthly and yearly variation in temperatures, while keeping both spatial and temporal variances (air monthly temperature at 1 km² for the WorldClim dataset, air hourly temperature for the weather station, and air minute temperature over 250 m radius disks for the microclimate dataset). Then, we computed pest performances based on these three datasets. Results for temperature ranging from 9 to 11°C revealed discrepancies in the simulation outputs in both survival and development rates depending on the spatiotemporal resolution of the temperature dataset. Temperature and simulated pest performances were then combined into multiple linear regression models to compare predicted vs. field data. We used an additional set of study sites to test the ability of the results of our model to be extrapolated over larger scales. Results showed that the model implemented with microclimatic data best predicted observed pest abundances for our study sites, but was less accurate than the global dataset model when performed at larger scales. Our simulations therefore stress the importance to consider different temperature datasets depending on the issue to be solved in order to accurately predict species abundances. In conclusion, keeping in mind that the mismatch between the size of organisms and the scale at which climate data are collected and modeled remains a key issue, temperature dataset selection should be balanced by the desired output spatiotemporal scale for better predicting pest dynamics and developing efficient pest management strategies. |
format |
article |
topic_facet |
L20 - Écologie animale P40 - Météorologie et climatologie U10 - Informatique, mathématiques et statistiques température microclimat lutte anti-insecte modèle de simulation modélisation des cultures http://aims.fao.org/aos/agrovoc/c_7657 http://aims.fao.org/aos/agrovoc/c_4802 http://aims.fao.org/aos/agrovoc/c_3885 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_9000024 http://aims.fao.org/aos/agrovoc/c_2485 http://aims.fao.org/aos/agrovoc/c_401 |
author |
Rebaudo, François Faye, Emile Dangles, Olivier |
author_facet |
Rebaudo, François Faye, Emile Dangles, Olivier |
author_sort |
Rebaudo, François |
title |
Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures |
title_short |
Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures |
title_full |
Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures |
title_fullStr |
Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures |
title_full_unstemmed |
Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures |
title_sort |
microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures |
url |
http://agritrop.cirad.fr/580880/ http://agritrop.cirad.fr/580880/1/Rebaudo_et_al_2016_FIP.pdf |
work_keys_str_mv |
AT rebaudofrancois microclimatedataimprovepredictionsofinsectabundancemodelsbasedoncalibratedspatiotemporaltemperatures AT fayeemile microclimatedataimprovepredictionsofinsectabundancemodelsbasedoncalibratedspatiotemporaltemperatures AT danglesolivier microclimatedataimprovepredictionsofinsectabundancemodelsbasedoncalibratedspatiotemporaltemperatures |
_version_ |
1792499074426994688 |