Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures

A large body of literature has recently recognized the role of microclimates in controlling the physiology and ecology of species, yet the relevance of fine-scale climatic data for modeling species performance and distribution remains a matter of debate. Using a 6-year monitoring of three potato moth species, major crop pests in the tropical Andes, we asked whether the spatiotemporal resolution of temperature data affect the predictions of models of moth performance and distribution. For this, we used three different climatic data sets: (i) the WorldClim dataset (global dataset), (ii) air temperature recorded using data loggers (weather station dataset), and (iii) air crop canopy temperature (microclimate dataset). We developed a statistical procedure to calibrate all datasets to monthly and yearly variation in temperatures, while keeping both spatial and temporal variances (air monthly temperature at 1 km² for the WorldClim dataset, air hourly temperature for the weather station, and air minute temperature over 250 m radius disks for the microclimate dataset). Then, we computed pest performances based on these three datasets. Results for temperature ranging from 9 to 11°C revealed discrepancies in the simulation outputs in both survival and development rates depending on the spatiotemporal resolution of the temperature dataset. Temperature and simulated pest performances were then combined into multiple linear regression models to compare predicted vs. field data. We used an additional set of study sites to test the ability of the results of our model to be extrapolated over larger scales. Results showed that the model implemented with microclimatic data best predicted observed pest abundances for our study sites, but was less accurate than the global dataset model when performed at larger scales. Our simulations therefore stress the importance to consider different temperature datasets depending on the issue to be solved in order to accurately predict species abundances. In conclusion, keeping in mind that the mismatch between the size of organisms and the scale at which climate data are collected and modeled remains a key issue, temperature dataset selection should be balanced by the desired output spatiotemporal scale for better predicting pest dynamics and developing efficient pest management strategies.

Saved in:
Bibliographic Details
Main Authors: Rebaudo, François, Faye, Emile, Dangles, Olivier
Format: article biblioteca
Language:eng
Subjects:L20 - Écologie animale, P40 - Météorologie et climatologie, U10 - Informatique, mathématiques et statistiques, température, microclimat, lutte anti-insecte, modèle de simulation, modélisation des cultures, http://aims.fao.org/aos/agrovoc/c_7657, http://aims.fao.org/aos/agrovoc/c_4802, http://aims.fao.org/aos/agrovoc/c_3885, http://aims.fao.org/aos/agrovoc/c_24242, http://aims.fao.org/aos/agrovoc/c_9000024, http://aims.fao.org/aos/agrovoc/c_2485, http://aims.fao.org/aos/agrovoc/c_401,
Online Access:http://agritrop.cirad.fr/580880/
http://agritrop.cirad.fr/580880/1/Rebaudo_et_al_2016_FIP.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-580880
record_format koha
spelling dig-cirad-fr-5808802024-01-29T05:35:18Z http://agritrop.cirad.fr/580880/ http://agritrop.cirad.fr/580880/ Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures. Rebaudo François, Faye Emile, Dangles Olivier. 2016. Frontiers in Physiology, 7 (139), 12 p.https://doi.org/10.3389/fphys.2016.00139 <https://doi.org/10.3389/fphys.2016.00139> Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures Rebaudo, François Faye, Emile Dangles, Olivier eng 2016 Frontiers in Physiology L20 - Écologie animale P40 - Météorologie et climatologie U10 - Informatique, mathématiques et statistiques température microclimat lutte anti-insecte modèle de simulation modélisation des cultures http://aims.fao.org/aos/agrovoc/c_7657 http://aims.fao.org/aos/agrovoc/c_4802 http://aims.fao.org/aos/agrovoc/c_3885 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_9000024 Équateur région andine http://aims.fao.org/aos/agrovoc/c_2485 http://aims.fao.org/aos/agrovoc/c_401 A large body of literature has recently recognized the role of microclimates in controlling the physiology and ecology of species, yet the relevance of fine-scale climatic data for modeling species performance and distribution remains a matter of debate. Using a 6-year monitoring of three potato moth species, major crop pests in the tropical Andes, we asked whether the spatiotemporal resolution of temperature data affect the predictions of models of moth performance and distribution. For this, we used three different climatic data sets: (i) the WorldClim dataset (global dataset), (ii) air temperature recorded using data loggers (weather station dataset), and (iii) air crop canopy temperature (microclimate dataset). We developed a statistical procedure to calibrate all datasets to monthly and yearly variation in temperatures, while keeping both spatial and temporal variances (air monthly temperature at 1 km² for the WorldClim dataset, air hourly temperature for the weather station, and air minute temperature over 250 m radius disks for the microclimate dataset). Then, we computed pest performances based on these three datasets. Results for temperature ranging from 9 to 11°C revealed discrepancies in the simulation outputs in both survival and development rates depending on the spatiotemporal resolution of the temperature dataset. Temperature and simulated pest performances were then combined into multiple linear regression models to compare predicted vs. field data. We used an additional set of study sites to test the ability of the results of our model to be extrapolated over larger scales. Results showed that the model implemented with microclimatic data best predicted observed pest abundances for our study sites, but was less accurate than the global dataset model when performed at larger scales. Our simulations therefore stress the importance to consider different temperature datasets depending on the issue to be solved in order to accurately predict species abundances. In conclusion, keeping in mind that the mismatch between the size of organisms and the scale at which climate data are collected and modeled remains a key issue, temperature dataset selection should be balanced by the desired output spatiotemporal scale for better predicting pest dynamics and developing efficient pest management strategies. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/580880/1/Rebaudo_et_al_2016_FIP.pdf text cc_0 info:eu-repo/semantics/openAccess https://creativecommons.org/publicdomain/zero/1.0/ https://doi.org/10.3389/fphys.2016.00139 10.3389/fphys.2016.00139 info:eu-repo/semantics/altIdentifier/doi/10.3389/fphys.2016.00139 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.3389/fphys.2016.00139
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic L20 - Écologie animale
P40 - Météorologie et climatologie
U10 - Informatique, mathématiques et statistiques
température
microclimat
lutte anti-insecte
modèle de simulation
modélisation des cultures
http://aims.fao.org/aos/agrovoc/c_7657
http://aims.fao.org/aos/agrovoc/c_4802
http://aims.fao.org/aos/agrovoc/c_3885
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_9000024
http://aims.fao.org/aos/agrovoc/c_2485
http://aims.fao.org/aos/agrovoc/c_401
L20 - Écologie animale
P40 - Météorologie et climatologie
U10 - Informatique, mathématiques et statistiques
température
microclimat
lutte anti-insecte
modèle de simulation
modélisation des cultures
http://aims.fao.org/aos/agrovoc/c_7657
http://aims.fao.org/aos/agrovoc/c_4802
http://aims.fao.org/aos/agrovoc/c_3885
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_9000024
http://aims.fao.org/aos/agrovoc/c_2485
http://aims.fao.org/aos/agrovoc/c_401
spellingShingle L20 - Écologie animale
P40 - Météorologie et climatologie
U10 - Informatique, mathématiques et statistiques
température
microclimat
lutte anti-insecte
modèle de simulation
modélisation des cultures
http://aims.fao.org/aos/agrovoc/c_7657
http://aims.fao.org/aos/agrovoc/c_4802
http://aims.fao.org/aos/agrovoc/c_3885
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_9000024
http://aims.fao.org/aos/agrovoc/c_2485
http://aims.fao.org/aos/agrovoc/c_401
L20 - Écologie animale
P40 - Météorologie et climatologie
U10 - Informatique, mathématiques et statistiques
température
microclimat
lutte anti-insecte
modèle de simulation
modélisation des cultures
http://aims.fao.org/aos/agrovoc/c_7657
http://aims.fao.org/aos/agrovoc/c_4802
http://aims.fao.org/aos/agrovoc/c_3885
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_9000024
http://aims.fao.org/aos/agrovoc/c_2485
http://aims.fao.org/aos/agrovoc/c_401
Rebaudo, François
Faye, Emile
Dangles, Olivier
Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures
description A large body of literature has recently recognized the role of microclimates in controlling the physiology and ecology of species, yet the relevance of fine-scale climatic data for modeling species performance and distribution remains a matter of debate. Using a 6-year monitoring of three potato moth species, major crop pests in the tropical Andes, we asked whether the spatiotemporal resolution of temperature data affect the predictions of models of moth performance and distribution. For this, we used three different climatic data sets: (i) the WorldClim dataset (global dataset), (ii) air temperature recorded using data loggers (weather station dataset), and (iii) air crop canopy temperature (microclimate dataset). We developed a statistical procedure to calibrate all datasets to monthly and yearly variation in temperatures, while keeping both spatial and temporal variances (air monthly temperature at 1 km² for the WorldClim dataset, air hourly temperature for the weather station, and air minute temperature over 250 m radius disks for the microclimate dataset). Then, we computed pest performances based on these three datasets. Results for temperature ranging from 9 to 11°C revealed discrepancies in the simulation outputs in both survival and development rates depending on the spatiotemporal resolution of the temperature dataset. Temperature and simulated pest performances were then combined into multiple linear regression models to compare predicted vs. field data. We used an additional set of study sites to test the ability of the results of our model to be extrapolated over larger scales. Results showed that the model implemented with microclimatic data best predicted observed pest abundances for our study sites, but was less accurate than the global dataset model when performed at larger scales. Our simulations therefore stress the importance to consider different temperature datasets depending on the issue to be solved in order to accurately predict species abundances. In conclusion, keeping in mind that the mismatch between the size of organisms and the scale at which climate data are collected and modeled remains a key issue, temperature dataset selection should be balanced by the desired output spatiotemporal scale for better predicting pest dynamics and developing efficient pest management strategies.
format article
topic_facet L20 - Écologie animale
P40 - Météorologie et climatologie
U10 - Informatique, mathématiques et statistiques
température
microclimat
lutte anti-insecte
modèle de simulation
modélisation des cultures
http://aims.fao.org/aos/agrovoc/c_7657
http://aims.fao.org/aos/agrovoc/c_4802
http://aims.fao.org/aos/agrovoc/c_3885
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_9000024
http://aims.fao.org/aos/agrovoc/c_2485
http://aims.fao.org/aos/agrovoc/c_401
author Rebaudo, François
Faye, Emile
Dangles, Olivier
author_facet Rebaudo, François
Faye, Emile
Dangles, Olivier
author_sort Rebaudo, François
title Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures
title_short Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures
title_full Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures
title_fullStr Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures
title_full_unstemmed Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures
title_sort microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures
url http://agritrop.cirad.fr/580880/
http://agritrop.cirad.fr/580880/1/Rebaudo_et_al_2016_FIP.pdf
work_keys_str_mv AT rebaudofrancois microclimatedataimprovepredictionsofinsectabundancemodelsbasedoncalibratedspatiotemporaltemperatures
AT fayeemile microclimatedataimprovepredictionsofinsectabundancemodelsbasedoncalibratedspatiotemporaltemperatures
AT danglesolivier microclimatedataimprovepredictionsofinsectabundancemodelsbasedoncalibratedspatiotemporaltemperatures
_version_ 1792499074426994688